Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds Unicode version

Theorem finds 4343
 Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.)
Hypotheses
Ref Expression
finds.1
finds.2
finds.3
finds.4
finds.5
finds.6
Assertion
Ref Expression
finds
Distinct variable groups:   ,   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()   ()   ()

Proof of Theorem finds
StepHypRef Expression
1 finds.5 . . . . 5
2 0ex 3907 . . . . . 6
3 finds.1 . . . . . 6
42, 3elab 2739 . . . . 5
51, 4mpbir 144 . . . 4
6 finds.6 . . . . . 6
7 vex 2605 . . . . . . 7
8 finds.2 . . . . . . 7
97, 8elab 2739 . . . . . 6
107sucex 4245 . . . . . . 7
11 finds.3 . . . . . . 7
1210, 11elab 2739 . . . . . 6
136, 9, 123imtr4g 203 . . . . 5
1413rgen 2417 . . . 4
15 peano5 4341 . . . 4
165, 14, 15mp2an 417 . . 3
1716sseli 2996 . 2
18 finds.4 . . 3
1918elabg 2740 . 2
2017, 19mpbid 145 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 103   wceq 1285   wcel 1434  cab 2068  wral 2349   wss 2974  c0 3252   csuc 4122  com 4333 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-iinf 4331 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-uni 3604  df-int 3639  df-suc 4128  df-iom 4334 This theorem is referenced by:  findes  4346  nn0suc  4347  elnn  4348  ordom  4349  nndceq0  4359  0elnn  4360  nna0r  6115  nnm0r  6116  nnsucelsuc  6128  nneneq  6382  php5  6383  php5dom  6388  frec2uzltd  9474  frecuzrdgg  9487  iseqvalt  9521  omgadd  9815
 Copyright terms: Public domain W3C validator