ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmpig Unicode version

Theorem ltmpig 6495
Description: Ordering property of multiplication for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
ltmpig  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  .N  A )  <N  ( C  .N  B ) ) )

Proof of Theorem ltmpig
StepHypRef Expression
1 pinn 6465 . . . . 5  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 6465 . . . . 5  |-  ( B  e.  N.  ->  B  e.  om )
3 elni2 6470 . . . . . 6  |-  ( C  e.  N.  <->  ( C  e.  om  /\  (/)  e.  C
) )
4 iba 288 . . . . . . . . 9  |-  ( (/)  e.  C  ->  ( A  e.  B  <->  ( A  e.  B  /\  (/)  e.  C
) ) )
5 nnmord 6121 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
64, 5sylan9bbr 444 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
763exp1 1131 . . . . . . 7  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) ) )
87imp4b 336 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( C  e. 
om  /\  (/)  e.  C
)  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
93, 8syl5bi 145 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( C  e.  N.  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
101, 2, 9syl2an 277 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( C  e.  N.  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
1110imp 119 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
12 ltpiord 6475 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
1312adantr 265 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  <N  B  <-> 
A  e.  B ) )
14 mulclpi 6484 . . . . . . 7  |-  ( ( C  e.  N.  /\  A  e.  N. )  ->  ( C  .N  A
)  e.  N. )
15 mulclpi 6484 . . . . . . 7  |-  ( ( C  e.  N.  /\  B  e.  N. )  ->  ( C  .N  B
)  e.  N. )
16 ltpiord 6475 . . . . . . 7  |-  ( ( ( C  .N  A
)  e.  N.  /\  ( C  .N  B
)  e.  N. )  ->  ( ( C  .N  A )  <N  ( C  .N  B )  <->  ( C  .N  A )  e.  ( C  .N  B ) ) )
1714, 15, 16syl2an 277 . . . . . 6  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .N  A )  e.  ( C  .N  B ) ) )
18 mulpiord 6473 . . . . . . . 8  |-  ( ( C  e.  N.  /\  A  e.  N. )  ->  ( C  .N  A
)  =  ( C  .o  A ) )
1918adantr 265 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( C  .N  A )  =  ( C  .o  A ) )
20 mulpiord 6473 . . . . . . . 8  |-  ( ( C  e.  N.  /\  B  e.  N. )  ->  ( C  .N  B
)  =  ( C  .o  B ) )
2120adantl 266 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( C  .N  B )  =  ( C  .o  B ) )
2219, 21eleq12d 2124 . . . . . 6  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  e.  ( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2317, 22bitrd 181 . . . . 5  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2423anandis 534 . . . 4  |-  ( ( C  e.  N.  /\  ( A  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2524ancoms 259 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2611, 13, 253bitr4d 213 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  <N  B  <-> 
( C  .N  A
)  <N  ( C  .N  B ) ) )
27263impa 1110 1  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  .N  A )  <N  ( C  .N  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259    e. wcel 1409   (/)c0 3252   class class class wbr 3792   omcom 4341  (class class class)co 5540    .o comu 6030   N.cnpi 6428    .N cmi 6430    <N clti 6431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-oadd 6036  df-omul 6037  df-ni 6460  df-mi 6462  df-lti 6463
This theorem is referenced by:  ordpipqqs  6530  ltsonq  6554  ltanqg  6556  ltmnqg  6557  1lt2nq  6562
  Copyright terms: Public domain W3C validator