ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltnle Unicode version

Theorem zltnle 9100
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zltnle  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  -.  B  <_  A )
)

Proof of Theorem zltnle
StepHypRef Expression
1 zre 9058 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  RR )
2 zre 9058 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  RR )
3 lenlt 7840 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  A  <->  -.  A  <  B ) )
41, 2, 3syl2anr 288 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <_  A  <->  -.  A  <  B ) )
54biimpd 143 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <_  A  ->  -.  A  <  B
) )
65con2d 613 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  ->  -.  B  <_  A
) )
7 ztri3or 9097 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
8 ax-1 6 . . . . 5  |-  ( A  <  B  ->  ( -.  B  <_  A  ->  A  <  B ) )
98a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  ->  ( -.  B  <_  A  ->  A  <  B
) ) )
10 eqcom 2141 . . . . . . . . 9  |-  ( A  =  B  <->  B  =  A )
11 eqle 7855 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  B  =  A )  ->  B  <_  A )
1210, 11sylan2b 285 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  =  B )  ->  B  <_  A )
1312ex 114 . . . . . . 7  |-  ( B  e.  RR  ->  ( A  =  B  ->  B  <_  A ) )
1413adantl 275 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  RR )  ->  ( A  =  B  ->  B  <_  A
) )
151, 14sylan2 284 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  =  B  ->  B  <_  A
) )
16 pm2.24 610 . . . . 5  |-  ( B  <_  A  ->  ( -.  B  <_  A  ->  A  <  B ) )
1715, 16syl6 33 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  =  B  ->  ( -.  B  <_  A  ->  A  <  B ) ) )
18 ltle 7851 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  B  <_  A )
)
191, 2, 18syl2anr 288 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  ->  B  <_  A )
)
2019, 16syl6 33 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  ->  ( -.  B  <_  A  ->  A  <  B
) ) )
219, 17, 203jaod 1282 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  ->  ( -.  B  <_  A  ->  A  <  B ) ) )
227, 21mpd 13 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  B  <_  A  ->  A  <  B
) )
236, 22impbid 128 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  -.  B  <_  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 961    = wceq 1331    e. wcel 1480   class class class wbr 3929   RRcr 7619    < clt 7800    <_ cle 7801   ZZcz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by:  znnnlt1  9102  nn0n0n1ge2b  9130  eluzdc  9404  fzdcel  9820  fzn  9822  fzpreddisj  9851  fzp1disj  9860  fzneuz  9881  fznuz  9882  uznfz  9883  fzp1nel  9884  difelfznle  9912  fzodisj  9955  exfzdc  10017  modfzo0difsn  10168  fzfig  10203  iseqf1olemqk  10267  exp3val  10295  facdiv  10484  bcval5  10509  zfz1isolemiso  10582  2zsupmax  10997  summodclem3  11149  alzdvds  11552  fzm1ndvds  11554  fzo0dvdseq  11555  n2dvds1  11609  dvdsbnd  11645  algcvgblem  11730  prmndvdsfaclt  11834  uzdcinzz  13005
  Copyright terms: Public domain W3C validator