ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltnle Unicode version

Theorem zltnle 8530
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zltnle  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  -.  B  <_  A )
)

Proof of Theorem zltnle
StepHypRef Expression
1 zre 8488 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  RR )
2 zre 8488 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  RR )
3 lenlt 7306 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  A  <->  -.  A  <  B ) )
41, 2, 3syl2anr 284 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <_  A  <->  -.  A  <  B ) )
54biimpd 142 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <_  A  ->  -.  A  <  B
) )
65con2d 587 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  ->  -.  B  <_  A
) )
7 ztri3or 8527 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
8 ax-1 5 . . . . 5  |-  ( A  <  B  ->  ( -.  B  <_  A  ->  A  <  B ) )
98a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  ->  ( -.  B  <_  A  ->  A  <  B
) ) )
10 eqcom 2085 . . . . . . . . 9  |-  ( A  =  B  <->  B  =  A )
11 eqle 7321 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  B  =  A )  ->  B  <_  A )
1210, 11sylan2b 281 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  =  B )  ->  B  <_  A )
1312ex 113 . . . . . . 7  |-  ( B  e.  RR  ->  ( A  =  B  ->  B  <_  A ) )
1413adantl 271 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  RR )  ->  ( A  =  B  ->  B  <_  A
) )
151, 14sylan2 280 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  =  B  ->  B  <_  A
) )
16 pm2.24 584 . . . . 5  |-  ( B  <_  A  ->  ( -.  B  <_  A  ->  A  <  B ) )
1715, 16syl6 33 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  =  B  ->  ( -.  B  <_  A  ->  A  <  B ) ) )
18 ltle 7317 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  B  <_  A )
)
191, 2, 18syl2anr 284 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  ->  B  <_  A )
)
2019, 16syl6 33 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  ->  ( -.  B  <_  A  ->  A  <  B
) ) )
219, 17, 203jaod 1236 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  ->  ( -.  B  <_  A  ->  A  <  B ) ) )
227, 21mpd 13 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  B  <_  A  ->  A  <  B
) )
236, 22impbid 127 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  -.  B  <_  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ w3o 919    = wceq 1285    e. wcel 1434   class class class wbr 3805   RRcr 7094    < clt 7267    <_ cle 7268   ZZcz 8484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-ltadd 7206
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485
This theorem is referenced by:  znnnlt1  8532  nn0n0n1ge2b  8560  eluzdc  8830  fzdcel  9187  fzn  9189  fzpreddisj  9216  fzp1disj  9225  fzneuz  9246  fznuz  9247  uznfz  9248  fzp1nel  9249  difelfznle  9275  fzodisj  9316  exfzdc  9378  modfzo0difsn  9529  fzfig  9564  facdiv  9814  ibcval5  9839  alzdvds  10462  fzm1ndvds  10464  fzo0dvdseq  10465  n2dvds1  10519  dvdsbnd  10555  algcvgblem  10638  prmndvdsfaclt  10742  uzdcinzz  10868
  Copyright terms: Public domain W3C validator