Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp0 GIF version

Theorem exp0 9423
 Description: Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1, following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
exp0 (𝐴 ∈ ℂ → (𝐴↑0) = 1)

Proof of Theorem exp0
StepHypRef Expression
1 0zd 8313 . . 3 (𝐴 ∈ ℂ → 0 ∈ ℤ)
2 0le0 8078 . . . . 5 0 ≤ 0
32a1i 9 . . . 4 (𝐴 ∈ ℂ → 0 ≤ 0)
43olcd 663 . . 3 (𝐴 ∈ ℂ → (𝐴 # 0 ∨ 0 ≤ 0))
5 expival 9421 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 0)) → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}), ℂ)‘0), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-0)))))
61, 4, 5mpd3an23 1245 . 2 (𝐴 ∈ ℂ → (𝐴↑0) = if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}), ℂ)‘0), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-0)))))
7 eqid 2056 . . 3 0 = 0
87iftruei 3364 . 2 if(0 = 0, 1, if(0 < 0, (seq1( · , (ℕ × {𝐴}), ℂ)‘0), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-0)))) = 1
96, 8syl6eq 2104 1 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∨ wo 639   = wceq 1259   ∈ wcel 1409  ifcif 3358  {csn 3402   class class class wbr 3791   × cxp 4370  ‘cfv 4929  (class class class)co 5539  ℂcc 6944  0cc0 6946  1c1 6947   · cmul 6951   < clt 7118   ≤ cle 7119  -cneg 7245   # cap 7645   / cdiv 7724  ℕcn 7989  ℤcz 8301  seqcseq 9374  ↑cexp 9418 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-if 3359  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-frec 6008  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-inn 7990  df-n0 8239  df-z 8302  df-uz 8569  df-iseq 9375  df-iexp 9419 This theorem is referenced by:  0exp0e1  9424  expp1  9426  expnegap0  9427  expcllem  9430  mulexp  9458  expadd  9461  expmul  9464  leexp1a  9474  exple1  9475  bernneq  9536  exp0d  9542  cjexp  9720  resqrexlemcalc3  9842  absexp  9905
 Copyright terms: Public domain W3C validator