ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsrprg GIF version

Theorem ltsrprg 6890
Description: Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
Assertion
Ref Expression
ltsrprg (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))

Proof of Theorem ltsrprg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrex 6880 . 2 ~R ∈ V
2 enrer 6878 . 2 ~R Er (P × P)
3 df-nr 6870 . 2 R = ((P × P) / ~R )
4 df-ltr 6873 . 2 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
5 enreceq 6879 . . . . 5 (((𝑧P𝑤P) ∧ (𝐴P𝐵P)) → ([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ↔ (𝑧 +P 𝐵) = (𝑤 +P 𝐴)))
6 enreceq 6879 . . . . . 6 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑣 +P 𝐷) = (𝑢 +P 𝐶)))
7 eqcom 2058 . . . . . 6 ((𝑣 +P 𝐷) = (𝑢 +P 𝐶) ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))
86, 7syl6bb 189 . . . . 5 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)))
95, 8bi2anan9 548 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ↔ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))))
10 oveq12 5549 . . . . . . 7 (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
1110adantl 266 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
12 simprlr 498 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑢P)
13 simplrr 496 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐵P)
14 addcomprg 6734 . . . . . . . . . . . 12 ((𝑢P𝐵P) → (𝑢 +P 𝐵) = (𝐵 +P 𝑢))
1514oveq1d 5555 . . . . . . . . . . 11 ((𝑢P𝐵P) → ((𝑢 +P 𝐵) +P 𝐶) = ((𝐵 +P 𝑢) +P 𝐶))
1612, 13, 15syl2anc 397 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑢 +P 𝐵) +P 𝐶) = ((𝐵 +P 𝑢) +P 𝐶))
17 simprrl 499 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐶P)
18 addassprg 6735 . . . . . . . . . . 11 ((𝑢P𝐵P𝐶P) → ((𝑢 +P 𝐵) +P 𝐶) = (𝑢 +P (𝐵 +P 𝐶)))
1912, 13, 17, 18syl3anc 1146 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑢 +P 𝐵) +P 𝐶) = (𝑢 +P (𝐵 +P 𝐶)))
20 addassprg 6735 . . . . . . . . . . 11 ((𝐵P𝑢P𝐶P) → ((𝐵 +P 𝑢) +P 𝐶) = (𝐵 +P (𝑢 +P 𝐶)))
2113, 12, 17, 20syl3anc 1146 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝑢) +P 𝐶) = (𝐵 +P (𝑢 +P 𝐶)))
2216, 19, 213eqtr3d 2096 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑢 +P (𝐵 +P 𝐶)) = (𝐵 +P (𝑢 +P 𝐶)))
2322oveq2d 5556 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
24 simplll 493 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑧P)
25 addclpr 6693 . . . . . . . . . . . . 13 ((𝑤P𝑣P) → (𝑤 +P 𝑣) ∈ P)
2625ad2ant2lr 487 . . . . . . . . . . . 12 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 +P 𝑣) ∈ P)
27 addclpr 6693 . . . . . . . . . . . . 13 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2827ad2ant2lr 487 . . . . . . . . . . . 12 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐵 +P 𝐶) ∈ P)
2926, 28anim12ci 326 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ ((𝐴P𝐵P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
3029an4s 530 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
3130simpld 109 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝐵 +P 𝐶) ∈ P)
32 addassprg 6735 . . . . . . . . 9 ((𝑧P𝑢P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))))
3324, 12, 31, 32syl3anc 1146 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))))
34 addclpr 6693 . . . . . . . . . 10 ((𝑢P𝐶P) → (𝑢 +P 𝐶) ∈ P)
3512, 17, 34syl2anc 397 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑢 +P 𝐶) ∈ P)
36 addassprg 6735 . . . . . . . . 9 ((𝑧P𝐵P ∧ (𝑢 +P 𝐶) ∈ P) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
3724, 13, 35, 36syl3anc 1146 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
3823, 33, 373eqtr4d 2098 . . . . . . 7 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)))
3938adantr 265 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)))
40 simprll 497 . . . . . . . . . . . 12 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑣P)
41 simplrl 495 . . . . . . . . . . . 12 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐴P)
42 addcomprg 6734 . . . . . . . . . . . 12 ((𝑣P𝐴P) → (𝑣 +P 𝐴) = (𝐴 +P 𝑣))
4340, 41, 42syl2anc 397 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P 𝐴) = (𝐴 +P 𝑣))
4443oveq1d 5555 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑣 +P 𝐴) +P 𝐷) = ((𝐴 +P 𝑣) +P 𝐷))
45 simprrr 500 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐷P)
46 addassprg 6735 . . . . . . . . . . 11 ((𝑣P𝐴P𝐷P) → ((𝑣 +P 𝐴) +P 𝐷) = (𝑣 +P (𝐴 +P 𝐷)))
4740, 41, 45, 46syl3anc 1146 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑣 +P 𝐴) +P 𝐷) = (𝑣 +P (𝐴 +P 𝐷)))
48 addassprg 6735 . . . . . . . . . . 11 ((𝐴P𝑣P𝐷P) → ((𝐴 +P 𝑣) +P 𝐷) = (𝐴 +P (𝑣 +P 𝐷)))
4941, 40, 45, 48syl3anc 1146 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐴 +P 𝑣) +P 𝐷) = (𝐴 +P (𝑣 +P 𝐷)))
5044, 47, 493eqtr3d 2096 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P (𝐴 +P 𝐷)) = (𝐴 +P (𝑣 +P 𝐷)))
5150oveq2d 5556 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
52 simpllr 494 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑤P)
53 addclpr 6693 . . . . . . . . . 10 ((𝐴P𝐷P) → (𝐴 +P 𝐷) ∈ P)
5441, 45, 53syl2anc 397 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝐴 +P 𝐷) ∈ P)
55 addassprg 6735 . . . . . . . . 9 ((𝑤P𝑣P ∧ (𝐴 +P 𝐷) ∈ P) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))))
5652, 40, 54, 55syl3anc 1146 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))))
57 addclpr 6693 . . . . . . . . . 10 ((𝑣P𝐷P) → (𝑣 +P 𝐷) ∈ P)
5840, 45, 57syl2anc 397 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P 𝐷) ∈ P)
59 addassprg 6735 . . . . . . . . 9 ((𝑤P𝐴P ∧ (𝑣 +P 𝐷) ∈ P) → ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
6052, 41, 58, 59syl3anc 1146 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
6151, 56, 603eqtr4d 2098 . . . . . . 7 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
6261adantr 265 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
6311, 39, 623eqtr4d 2098 . . . . 5 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)))
6463ex 112 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))))
659, 64sylbid 143 . . 3 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))))
66 ltaprg 6775 . . . . 5 ((𝑥P𝑦P𝑓P) → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P (𝑓 +P 𝑦)))
6766adantl 266 . . . 4 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ (𝑥P𝑦P𝑓P)) → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P (𝑓 +P 𝑦)))
68 addclpr 6693 . . . . 5 ((𝑧P𝑢P) → (𝑧 +P 𝑢) ∈ P)
6924, 12, 68syl2anc 397 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑧 +P 𝑢) ∈ P)
7030simprd 111 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑤 +P 𝑣) ∈ P)
71 addcomprg 6734 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
7271adantl 266 . . . 4 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ (𝑥P𝑦P)) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
7367, 69, 31, 70, 72, 54caovord3d 5699 . . 3 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))))
7465, 73syld 44 . 2 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))))
751, 2, 3, 4, 74brecop 6227 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 896   = wceq 1259  wcel 1409  cop 3406   class class class wbr 3792  (class class class)co 5540  [cec 6135  Pcnp 6447   +P cpp 6449  <P cltp 6451   ~R cer 6452  Rcnr 6453   <R cltr 6459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873
This theorem is referenced by:  gt0srpr  6891  lttrsr  6905  ltposr  6906  ltsosr  6907  0lt1sr  6908  ltasrg  6913  aptisr  6921  mulextsr1  6923  archsr  6924  prsrlt  6929  pitoregt0  6983
  Copyright terms: Public domain W3C validator