Step | Hyp | Ref
| Expression |
1 | | eleq2 2098 |
. . . . . 6
⊢ (𝑏 = B → (A
∈ 𝑏 ↔ A
∈ B)) |
2 | | eqeq2 2046 |
. . . . . . . 8
⊢ (𝑏 = B → ((A
+𝑜 x) = 𝑏 ↔ (A +𝑜 x) = B)) |
3 | 2 | anbi2d 437 |
. . . . . . 7
⊢ (𝑏 = B → ((∅ ∈ x ∧ (A
+𝑜 x) = 𝑏) ↔ (∅ ∈ x ∧ (A
+𝑜 x) = B))) |
4 | 3 | rexbidv 2321 |
. . . . . 6
⊢ (𝑏 = B → (∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = 𝑏) ↔ ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = B))) |
5 | 1, 4 | imbi12d 223 |
. . . . 5
⊢ (𝑏 = B → ((A
∈ 𝑏 → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = 𝑏)) ↔ (A ∈ B → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = B)))) |
6 | 5 | imbi2d 219 |
. . . 4
⊢ (𝑏 = B → ((A
∈ 𝜔 → (A ∈ 𝑏 → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = 𝑏))) ↔ (A ∈ 𝜔
→ (A ∈ B →
∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = B))))) |
7 | | eleq2 2098 |
. . . . . 6
⊢ (𝑏 = ∅ → (A ∈ 𝑏 ↔ A ∈
∅)) |
8 | | eqeq2 2046 |
. . . . . . . 8
⊢ (𝑏 = ∅ → ((A +𝑜 x) = 𝑏 ↔ (A +𝑜 x) = ∅)) |
9 | 8 | anbi2d 437 |
. . . . . . 7
⊢ (𝑏 = ∅ → ((∅ ∈ x ∧ (A
+𝑜 x) = 𝑏) ↔ (∅ ∈ x ∧ (A
+𝑜 x) =
∅))) |
10 | 9 | rexbidv 2321 |
. . . . . 6
⊢ (𝑏 = ∅ → (∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = 𝑏) ↔ ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) =
∅))) |
11 | 7, 10 | imbi12d 223 |
. . . . 5
⊢ (𝑏 = ∅ → ((A ∈ 𝑏 → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = 𝑏)) ↔ (A ∈ ∅ →
∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) =
∅)))) |
12 | | eleq2 2098 |
. . . . . 6
⊢ (𝑏 = y → (A
∈ 𝑏 ↔ A
∈ y)) |
13 | | eqeq2 2046 |
. . . . . . . 8
⊢ (𝑏 = y → ((A
+𝑜 x) = 𝑏 ↔ (A +𝑜 x) = y)) |
14 | 13 | anbi2d 437 |
. . . . . . 7
⊢ (𝑏 = y → ((∅ ∈ x ∧ (A
+𝑜 x) = 𝑏) ↔ (∅ ∈ x ∧ (A
+𝑜 x) = y))) |
15 | 14 | rexbidv 2321 |
. . . . . 6
⊢ (𝑏 = y → (∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = 𝑏) ↔ ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = y))) |
16 | 12, 15 | imbi12d 223 |
. . . . 5
⊢ (𝑏 = y → ((A
∈ 𝑏 → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = 𝑏)) ↔ (A ∈ y → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = y)))) |
17 | | eleq2 2098 |
. . . . . 6
⊢ (𝑏 = suc y → (A
∈ 𝑏 ↔ A
∈ suc y)) |
18 | | eqeq2 2046 |
. . . . . . . 8
⊢ (𝑏 = suc y → ((A
+𝑜 x) = 𝑏 ↔ (A +𝑜 x) = suc y)) |
19 | 18 | anbi2d 437 |
. . . . . . 7
⊢ (𝑏 = suc y → ((∅ ∈ x ∧ (A
+𝑜 x) = 𝑏) ↔ (∅ ∈ x ∧ (A
+𝑜 x) = suc y))) |
20 | 19 | rexbidv 2321 |
. . . . . 6
⊢ (𝑏 = suc y → (∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = 𝑏) ↔ ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = suc y))) |
21 | 17, 20 | imbi12d 223 |
. . . . 5
⊢ (𝑏 = suc y → ((A
∈ 𝑏 → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = 𝑏)) ↔ (A ∈ suc y → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = suc y)))) |
22 | | noel 3222 |
. . . . . . 7
⊢ ¬
A ∈
∅ |
23 | 22 | pm2.21i 574 |
. . . . . 6
⊢ (A ∈ ∅ →
∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) =
∅)) |
24 | 23 | a1i 9 |
. . . . 5
⊢ (A ∈ 𝜔
→ (A ∈ ∅ → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) =
∅))) |
25 | | elsuci 4106 |
. . . . . . 7
⊢ (A ∈ suc y → (A
∈ y ∨ A = y)) |
26 | | simpr 103 |
. . . . . . . . 9
⊢
(((y ∈ 𝜔 ∧
A ∈
𝜔) ∧ (A ∈ y → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = y))) → (A
∈ y
→ ∃x ∈ 𝜔
(∅ ∈ x ∧ (A +𝑜 x) = y))) |
27 | | peano2 4261 |
. . . . . . . . . . . . . . 15
⊢ (x ∈ 𝜔
→ suc x ∈ 𝜔) |
28 | 27 | ad2antlr 458 |
. . . . . . . . . . . . . 14
⊢
(((A ∈ 𝜔 ∧
x ∈
𝜔) ∧ (∅ ∈ x ∧ (A
+𝑜 x) = y)) → suc x
∈ 𝜔) |
29 | | elelsuc 4112 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∈ x
→ ∅ ∈ suc x) |
30 | 29 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢
((A ∈ 𝜔 ∧
x ∈
𝜔) → (∅ ∈ x → ∅ ∈
suc x)) |
31 | | nnasuc 5994 |
. . . . . . . . . . . . . . . . . 18
⊢
((A ∈ 𝜔 ∧
x ∈
𝜔) → (A +𝑜
suc x) = suc (A +𝑜 x)) |
32 | | suceq 4105 |
. . . . . . . . . . . . . . . . . 18
⊢
((A +𝑜 x) = y →
suc (A +𝑜 x) = suc y) |
33 | 31, 32 | sylan9eq 2089 |
. . . . . . . . . . . . . . . . 17
⊢
(((A ∈ 𝜔 ∧
x ∈
𝜔) ∧ (A +𝑜 x) = y) →
(A +𝑜 suc x) = suc y) |
34 | 33 | ex 108 |
. . . . . . . . . . . . . . . 16
⊢
((A ∈ 𝜔 ∧
x ∈
𝜔) → ((A +𝑜
x) = y
→ (A +𝑜 suc
x) = suc y)) |
35 | 30, 34 | anim12d 318 |
. . . . . . . . . . . . . . 15
⊢
((A ∈ 𝜔 ∧
x ∈
𝜔) → ((∅ ∈ x ∧ (A +𝑜 x) = y) →
(∅ ∈ suc x ∧ (A +𝑜 suc x) = suc y))) |
36 | 35 | imp 115 |
. . . . . . . . . . . . . 14
⊢
(((A ∈ 𝜔 ∧
x ∈
𝜔) ∧ (∅ ∈ x ∧ (A
+𝑜 x) = y)) → (∅ ∈ suc x ∧ (A
+𝑜 suc x) = suc y)) |
37 | | eleq2 2098 |
. . . . . . . . . . . . . . . 16
⊢ (z = suc x →
(∅ ∈ z ↔ ∅ ∈
suc x)) |
38 | | oveq2 5463 |
. . . . . . . . . . . . . . . . 17
⊢ (z = suc x →
(A +𝑜 z) = (A
+𝑜 suc x)) |
39 | 38 | eqeq1d 2045 |
. . . . . . . . . . . . . . . 16
⊢ (z = suc x →
((A +𝑜 z) = suc y
↔ (A +𝑜 suc
x) = suc y)) |
40 | 37, 39 | anbi12d 442 |
. . . . . . . . . . . . . . 15
⊢ (z = suc x →
((∅ ∈ z ∧ (A +𝑜 z) = suc y)
↔ (∅ ∈ suc x ∧ (A +𝑜 suc x) = suc y))) |
41 | 40 | rspcev 2650 |
. . . . . . . . . . . . . 14
⊢ ((suc
x ∈
𝜔 ∧ (∅ ∈ suc x ∧ (A
+𝑜 suc x) = suc y)) → ∃z ∈ 𝜔 (∅ ∈ z ∧ (A
+𝑜 z) = suc y)) |
42 | 28, 36, 41 | syl2anc 391 |
. . . . . . . . . . . . 13
⊢
(((A ∈ 𝜔 ∧
x ∈
𝜔) ∧ (∅ ∈ x ∧ (A
+𝑜 x) = y)) → ∃z ∈ 𝜔 (∅ ∈ z ∧ (A
+𝑜 z) = suc y)) |
43 | 42 | ex 108 |
. . . . . . . . . . . 12
⊢
((A ∈ 𝜔 ∧
x ∈
𝜔) → ((∅ ∈ x ∧ (A +𝑜 x) = y) →
∃z ∈ 𝜔 (∅ ∈ z ∧ (A
+𝑜 z) = suc y))) |
44 | 43 | rexlimdva 2427 |
. . . . . . . . . . 11
⊢ (A ∈ 𝜔
→ (∃x ∈ 𝜔
(∅ ∈ x ∧ (A +𝑜 x) = y) →
∃z ∈ 𝜔 (∅ ∈ z ∧ (A
+𝑜 z) = suc y))) |
45 | | eleq2 2098 |
. . . . . . . . . . . . 13
⊢ (z = x →
(∅ ∈ z ↔ ∅ ∈
x)) |
46 | | oveq2 5463 |
. . . . . . . . . . . . . 14
⊢ (z = x →
(A +𝑜 z) = (A
+𝑜 x)) |
47 | 46 | eqeq1d 2045 |
. . . . . . . . . . . . 13
⊢ (z = x →
((A +𝑜 z) = suc y
↔ (A +𝑜 x) = suc y)) |
48 | 45, 47 | anbi12d 442 |
. . . . . . . . . . . 12
⊢ (z = x →
((∅ ∈ z ∧ (A +𝑜 z) = suc y)
↔ (∅ ∈ x ∧ (A +𝑜 x) = suc y))) |
49 | 48 | cbvrexv 2528 |
. . . . . . . . . . 11
⊢ (∃z ∈ 𝜔 (∅ ∈ z ∧ (A
+𝑜 z) = suc y) ↔ ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = suc y)) |
50 | 44, 49 | syl6ib 150 |
. . . . . . . . . 10
⊢ (A ∈ 𝜔
→ (∃x ∈ 𝜔
(∅ ∈ x ∧ (A +𝑜 x) = y) →
∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = suc y))) |
51 | 50 | ad2antlr 458 |
. . . . . . . . 9
⊢
(((y ∈ 𝜔 ∧
A ∈
𝜔) ∧ (A ∈ y → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = y))) → (∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = y) → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = suc y))) |
52 | 26, 51 | syld 40 |
. . . . . . . 8
⊢
(((y ∈ 𝜔 ∧
A ∈
𝜔) ∧ (A ∈ y → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = y))) → (A
∈ y
→ ∃x ∈ 𝜔
(∅ ∈ x ∧ (A +𝑜 x) = suc y))) |
53 | | 0lt1o 5962 |
. . . . . . . . . . . 12
⊢ ∅
∈ 1𝑜 |
54 | 53 | a1i 9 |
. . . . . . . . . . 11
⊢
((A ∈ 𝜔 ∧
A = y)
→ ∅ ∈
1𝑜) |
55 | | nnon 4275 |
. . . . . . . . . . . . 13
⊢ (A ∈ 𝜔
→ A ∈ On) |
56 | | oa1suc 5986 |
. . . . . . . . . . . . 13
⊢ (A ∈ On →
(A +𝑜
1𝑜) = suc A) |
57 | 55, 56 | syl 14 |
. . . . . . . . . . . 12
⊢ (A ∈ 𝜔
→ (A +𝑜
1𝑜) = suc A) |
58 | | suceq 4105 |
. . . . . . . . . . . 12
⊢ (A = y → suc
A = suc y) |
59 | 57, 58 | sylan9eq 2089 |
. . . . . . . . . . 11
⊢
((A ∈ 𝜔 ∧
A = y)
→ (A +𝑜
1𝑜) = suc y) |
60 | | 1onn 6029 |
. . . . . . . . . . . 12
⊢
1𝑜 ∈
𝜔 |
61 | | eleq2 2098 |
. . . . . . . . . . . . . 14
⊢ (x = 1𝑜 → (∅ ∈ x ↔
∅ ∈
1𝑜)) |
62 | | oveq2 5463 |
. . . . . . . . . . . . . . 15
⊢ (x = 1𝑜 → (A +𝑜 x) = (A
+𝑜 1𝑜)) |
63 | 62 | eqeq1d 2045 |
. . . . . . . . . . . . . 14
⊢ (x = 1𝑜 → ((A +𝑜 x) = suc y
↔ (A +𝑜
1𝑜) = suc y)) |
64 | 61, 63 | anbi12d 442 |
. . . . . . . . . . . . 13
⊢ (x = 1𝑜 → ((∅ ∈ x ∧ (A
+𝑜 x) = suc y) ↔ (∅ ∈ 1𝑜 ∧ (A
+𝑜 1𝑜) = suc y))) |
65 | 64 | rspcev 2650 |
. . . . . . . . . . . 12
⊢
((1𝑜 ∈ 𝜔
∧ (∅ ∈
1𝑜 ∧ (A +𝑜 1𝑜) = suc
y)) → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = suc y)) |
66 | 60, 65 | mpan 400 |
. . . . . . . . . . 11
⊢ ((∅
∈ 1𝑜 ∧ (A
+𝑜 1𝑜) = suc y) → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = suc y)) |
67 | 54, 59, 66 | syl2anc 391 |
. . . . . . . . . 10
⊢
((A ∈ 𝜔 ∧
A = y)
→ ∃x ∈ 𝜔
(∅ ∈ x ∧ (A +𝑜 x) = suc y)) |
68 | 67 | ex 108 |
. . . . . . . . 9
⊢ (A ∈ 𝜔
→ (A = y → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = suc y))) |
69 | 68 | ad2antlr 458 |
. . . . . . . 8
⊢
(((y ∈ 𝜔 ∧
A ∈
𝜔) ∧ (A ∈ y → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = y))) → (A =
y → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = suc y))) |
70 | 52, 69 | jaod 636 |
. . . . . . 7
⊢
(((y ∈ 𝜔 ∧
A ∈
𝜔) ∧ (A ∈ y → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = y))) → ((A
∈ y ∨ A = y) → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = suc y))) |
71 | 25, 70 | syl5 28 |
. . . . . 6
⊢
(((y ∈ 𝜔 ∧
A ∈
𝜔) ∧ (A ∈ y → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = y))) → (A
∈ suc y
→ ∃x ∈ 𝜔
(∅ ∈ x ∧ (A +𝑜 x) = suc y))) |
72 | 71 | exp31 346 |
. . . . 5
⊢ (y ∈ 𝜔
→ (A ∈ 𝜔 → ((A ∈ y → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = y)) → (A
∈ suc y
→ ∃x ∈ 𝜔
(∅ ∈ x ∧ (A +𝑜 x) = suc y))))) |
73 | 11, 16, 21, 24, 72 | finds2 4267 |
. . . 4
⊢ (𝑏 ∈ 𝜔 → (A ∈ 𝜔
→ (A ∈ 𝑏 → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = 𝑏)))) |
74 | 6, 73 | vtoclga 2613 |
. . 3
⊢ (B ∈ 𝜔
→ (A ∈ 𝜔 → (A ∈ B → ∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = B)))) |
75 | 74 | impcom 116 |
. 2
⊢
((A ∈ 𝜔 ∧
B ∈
𝜔) → (A ∈ B →
∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = B))) |
76 | | peano1 4260 |
. . . . . . . . 9
⊢ ∅
∈ 𝜔 |
77 | | nnaord 6018 |
. . . . . . . . 9
⊢ ((∅
∈ 𝜔 ∧ x ∈ 𝜔 ∧
A ∈
𝜔) → (∅ ∈ x ↔ (A
+𝑜 ∅) ∈ (A +𝑜 x))) |
78 | 76, 77 | mp3an1 1218 |
. . . . . . . 8
⊢
((x ∈ 𝜔 ∧
A ∈
𝜔) → (∅ ∈ x ↔ (A
+𝑜 ∅) ∈ (A +𝑜 x))) |
79 | 78 | ancoms 255 |
. . . . . . 7
⊢
((A ∈ 𝜔 ∧
x ∈
𝜔) → (∅ ∈ x ↔ (A
+𝑜 ∅) ∈ (A +𝑜 x))) |
80 | | nna0 5992 |
. . . . . . . . 9
⊢ (A ∈ 𝜔
→ (A +𝑜 ∅) =
A) |
81 | 80 | adantr 261 |
. . . . . . . 8
⊢
((A ∈ 𝜔 ∧
x ∈
𝜔) → (A +𝑜
∅) = A) |
82 | 81 | eleq1d 2103 |
. . . . . . 7
⊢
((A ∈ 𝜔 ∧
x ∈
𝜔) → ((A +𝑜
∅) ∈ (A +𝑜 x) ↔ A
∈ (A
+𝑜 x))) |
83 | 79, 82 | bitrd 177 |
. . . . . 6
⊢
((A ∈ 𝜔 ∧
x ∈
𝜔) → (∅ ∈ x ↔ A ∈ (A
+𝑜 x))) |
84 | 83 | anbi1d 438 |
. . . . 5
⊢
((A ∈ 𝜔 ∧
x ∈
𝜔) → ((∅ ∈ x ∧ (A +𝑜 x) = B) ↔
(A ∈
(A +𝑜 x) ∧ (A +𝑜 x) = B))) |
85 | | eleq2 2098 |
. . . . . 6
⊢
((A +𝑜 x) = B →
(A ∈
(A +𝑜 x) ↔ A
∈ B)) |
86 | 85 | biimpac 282 |
. . . . 5
⊢
((A ∈ (A
+𝑜 x) ∧ (A
+𝑜 x) = B) → A
∈ B) |
87 | 84, 86 | syl6bi 152 |
. . . 4
⊢
((A ∈ 𝜔 ∧
x ∈
𝜔) → ((∅ ∈ x ∧ (A +𝑜 x) = B) →
A ∈
B)) |
88 | 87 | rexlimdva 2427 |
. . 3
⊢ (A ∈ 𝜔
→ (∃x ∈ 𝜔
(∅ ∈ x ∧ (A +𝑜 x) = B) →
A ∈
B)) |
89 | 88 | adantr 261 |
. 2
⊢
((A ∈ 𝜔 ∧
B ∈
𝜔) → (∃x ∈ 𝜔
(∅ ∈ x ∧ (A +𝑜 x) = B) →
A ∈
B)) |
90 | 75, 89 | impbid 120 |
1
⊢
((A ∈ 𝜔 ∧
B ∈
𝜔) → (A ∈ B ↔
∃x ∈ 𝜔 (∅ ∈ x ∧ (A
+𝑜 x) = B))) |