![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablnnncan1 | Structured version Visualization version GIF version |
Description: Cancellation law for group subtraction. (nnncan1 10355 analog.) (Contributed by NM, 7-Apr-2015.) |
Ref | Expression |
---|---|
ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
ablnncan.m | ⊢ − = (-g‘𝐺) |
ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsub32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablnnncan1 | ⊢ (𝜑 → ((𝑋 − 𝑌) − (𝑋 − 𝑍)) = (𝑍 − 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablnncan.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
3 | ablnncan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
4 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | ablnncan.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | ablgrp 18244 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
8 | ablsub32.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
9 | 1, 2 | grpsubcl 17542 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) ∈ 𝐵) |
10 | 7, 4, 8, 9 | syl3anc 1366 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑍) ∈ 𝐵) |
11 | 1, 2, 3, 4, 5, 10 | ablsub32 18273 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) − (𝑋 − 𝑍)) = ((𝑋 − (𝑋 − 𝑍)) − 𝑌)) |
12 | 1, 2, 3, 4, 8 | ablnncan 18272 | . . 3 ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑍)) = 𝑍) |
13 | 12 | oveq1d 6705 | . 2 ⊢ (𝜑 → ((𝑋 − (𝑋 − 𝑍)) − 𝑌) = (𝑍 − 𝑌)) |
14 | 11, 13 | eqtrd 2685 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) − (𝑋 − 𝑍)) = (𝑍 − 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 Grpcgrp 17469 -gcsg 17471 Abelcabl 18240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-sbg 17474 df-cmn 18241 df-abl 18242 |
This theorem is referenced by: minveclem2 23243 ply1divmo 23940 baerlem3lem2 37316 |
Copyright terms: Public domain | W3C validator |