Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnnncan1 Structured version   Visualization version   GIF version

Theorem ablnnncan1 18275
 Description: Cancellation law for group subtraction. (nnncan1 10355 analog.) (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
ablsub32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablnnncan1 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))

Proof of Theorem ablnnncan1
StepHypRef Expression
1 ablnncan.b . . 3 𝐵 = (Base‘𝐺)
2 ablnncan.m . . 3 = (-g𝐺)
3 ablnncan.g . . 3 (𝜑𝐺 ∈ Abel)
4 ablnncan.x . . 3 (𝜑𝑋𝐵)
5 ablnncan.y . . 3 (𝜑𝑌𝐵)
6 ablgrp 18244 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
73, 6syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
8 ablsub32.z . . . 4 (𝜑𝑍𝐵)
91, 2grpsubcl 17542 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
107, 4, 8, 9syl3anc 1366 . . 3 (𝜑 → (𝑋 𝑍) ∈ 𝐵)
111, 2, 3, 4, 5, 10ablsub32 18273 . 2 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = ((𝑋 (𝑋 𝑍)) 𝑌))
121, 2, 3, 4, 8ablnncan 18272 . . 3 (𝜑 → (𝑋 (𝑋 𝑍)) = 𝑍)
1312oveq1d 6705 . 2 (𝜑 → ((𝑋 (𝑋 𝑍)) 𝑌) = (𝑍 𝑌))
1411, 13eqtrd 2685 1 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523   ∈ wcel 2030  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  Grpcgrp 17469  -gcsg 17471  Abelcabl 18240 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-cmn 18241  df-abl 18242 This theorem is referenced by:  minveclem2  23243  ply1divmo  23940  baerlem3lem2  37316
 Copyright terms: Public domain W3C validator