Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdomelir Structured version   Visualization version   GIF version

Theorem cardsdomelir 8784
 Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. This is half of the assertion cardsdomel 8785 and can be proven without the AC. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
cardsdomelir (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)

Proof of Theorem cardsdomelir
StepHypRef Expression
1 cardon 8755 . . . 4 (card‘𝐵) ∈ On
21onelssi 5824 . . . 4 (𝐴 ∈ (card‘𝐵) → 𝐴 ⊆ (card‘𝐵))
3 ssdomg 7986 . . . 4 ((card‘𝐵) ∈ On → (𝐴 ⊆ (card‘𝐵) → 𝐴 ≼ (card‘𝐵)))
41, 2, 3mpsyl 68 . . 3 (𝐴 ∈ (card‘𝐵) → 𝐴 ≼ (card‘𝐵))
5 elfvdm 6207 . . . 4 (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card)
6 cardid2 8764 . . . 4 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
75, 6syl 17 . . 3 (𝐴 ∈ (card‘𝐵) → (card‘𝐵) ≈ 𝐵)
8 domentr 8000 . . 3 ((𝐴 ≼ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴𝐵)
94, 7, 8syl2anc 692 . 2 (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)
10 cardne 8776 . 2 (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)
11 brsdom 7963 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
129, 10, 11sylanbrc 697 1 (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∈ wcel 1988   ⊆ wss 3567   class class class wbr 4644  dom cdm 5104  Oncon0 5711  ‘cfv 5876   ≈ cen 7937   ≼ cdom 7938   ≺ csdm 7939  cardccrd 8746 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-ord 5714  df-on 5715  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-en 7941  df-dom 7942  df-sdom 7943  df-card 8750 This theorem is referenced by:  cardsdomel  8785  pwsdompw  9011  alephval2  9379  pwcfsdom  9390  tskcard  9588
 Copyright terms: Public domain W3C validator