Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme16aN Structured version   Visualization version   GIF version

Theorem cdleme16aN 35012
 Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, s ∨ u ≠ t ∨ u. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme11.l = (le‘𝐾)
cdleme11.j = (join‘𝐾)
cdleme11.m = (meet‘𝐾)
cdleme11.a 𝐴 = (Atoms‘𝐾)
cdleme11.h 𝐻 = (LHyp‘𝐾)
cdleme11.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme16aN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑆 𝑈) ≠ (𝑇 𝑈))

Proof of Theorem cdleme16aN
StepHypRef Expression
1 simp1ll 1122 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝐾 ∈ HL)
2 simp22 1093 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑆𝐴)
3 simp23 1094 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑇𝐴)
4 simp1l 1083 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simp1r 1084 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 simp21 1092 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑄𝐴)
7 simp31 1095 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑃𝑄)
8 cdleme11.l . . . 4 = (le‘𝐾)
9 cdleme11.j . . . 4 = (join‘𝐾)
10 cdleme11.m . . . 4 = (meet‘𝐾)
11 cdleme11.a . . . 4 𝐴 = (Atoms‘𝐾)
12 cdleme11.h . . . 4 𝐻 = (LHyp‘𝐾)
13 cdleme11.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
148, 9, 10, 11, 12, 13lhpat2 34797 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
154, 5, 6, 7, 14syl112anc 1327 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑈𝐴)
16 simp32 1096 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑆𝑇)
17 simp33 1097 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → ¬ 𝑈 (𝑆 𝑇))
18 eqid 2626 . . . 4 (LPlanes‘𝐾) = (LPlanes‘𝐾)
198, 9, 11, 18lplni2 34289 . . 3 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾))
201, 2, 3, 15, 16, 17, 19syl132anc 1341 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾))
21 eqid 2626 . . 3 ((𝑆 𝑇) 𝑈) = ((𝑆 𝑇) 𝑈)
229, 11, 18, 21lplnllnneN 34308 . 2 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ ((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾)) → (𝑆 𝑈) ≠ (𝑇 𝑈))
231, 2, 3, 15, 20, 22syl131anc 1336 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑆 𝑈) ≠ (𝑇 𝑈))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1992   ≠ wne 2796   class class class wbr 4618  ‘cfv 5850  (class class class)co 6605  lecple 15864  joincjn 16860  meetcmee 16861  Atomscatm 34016  HLchlt 34103  LPlanesclpl 34244  LHypclh 34736 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-preset 16844  df-poset 16862  df-plt 16874  df-lub 16890  df-glb 16891  df-join 16892  df-meet 16893  df-p0 16955  df-p1 16956  df-lat 16962  df-clat 17024  df-oposet 33929  df-ol 33931  df-oml 33932  df-covers 34019  df-ats 34020  df-atl 34051  df-cvlat 34075  df-hlat 34104  df-llines 34250  df-lplanes 34251  df-lhyp 34740 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator