Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk19x Structured version   Visualization version   GIF version

Theorem cdlemk19x 35711
Description: cdlemk19 35637 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 30-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk19x ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝑧,   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk19x
StepHypRef Expression
1 simp1l 1083 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdlemk5.b . . . 4 𝐵 = (Base‘𝐾)
3 cdlemk5.h . . . 4 𝐻 = (LHyp‘𝐾)
4 cdlemk5.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 cdlemk5.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
62, 3, 4, 5cdlemftr1 35335 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑏𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))
71, 6syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑏𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))
8 nfv 1840 . . 3 𝑏(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
9 nfcv 2761 . . . . . 6 𝑏𝐹
10 cdlemk5.x . . . . . . 7 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
11 nfra1 2936 . . . . . . . 8 𝑏𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌)
12 nfcv 2761 . . . . . . . 8 𝑏𝑇
1311, 12nfriota 6574 . . . . . . 7 𝑏(𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
1410, 13nfcxfr 2759 . . . . . 6 𝑏𝑋
159, 14nfcsb 3532 . . . . 5 𝑏𝐹 / 𝑔𝑋
16 nfcv 2761 . . . . 5 𝑏𝑃
1715, 16nffv 6155 . . . 4 𝑏(𝐹 / 𝑔𝑋𝑃)
1817nfeq1 2774 . . 3 𝑏(𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃)
19 simpl1 1062 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)))
20 simpl2 1063 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇))
21 simpl3 1064 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
22 simpr 477 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹))))
23 cdlemk5.l . . . . . 6 = (le‘𝐾)
24 cdlemk5.j . . . . . 6 = (join‘𝐾)
25 cdlemk5.m . . . . . 6 = (meet‘𝐾)
26 cdlemk5.a . . . . . 6 𝐴 = (Atoms‘𝐾)
27 cdlemk5.z . . . . . 6 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
28 cdlemk5.y . . . . . 6 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
292, 23, 24, 25, 26, 3, 4, 5, 27, 28, 10cdlemk19xlem 35710 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))
3019, 20, 21, 22, 29syl121anc 1328 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))
3130exp32 630 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑏𝑇 → ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))))
328, 18, 31rexlimd 3019 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (∃𝑏𝑇 (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃)))
337, 32mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  csb 3514   class class class wbr 4613   I cid 4984  ccnv 5073  cres 5076  ccom 5078  cfv 5847  crio 6564  (class class class)co 6604  Basecbs 15781  lecple 15869  joincjn 16865  meetcmee 16866  Atomscatm 34030  HLchlt 34117  LHypclh 34750  LTrncltrn 34867  trLctrl 34925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-riotaBAD 33719
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-undef 7344  df-map 7804  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-oposet 33943  df-ol 33945  df-oml 33946  df-covers 34033  df-ats 34034  df-atl 34065  df-cvlat 34089  df-hlat 34118  df-llines 34264  df-lplanes 34265  df-lvols 34266  df-lines 34267  df-psubsp 34269  df-pmap 34270  df-padd 34562  df-lhyp 34754  df-laut 34755  df-ldil 34870  df-ltrn 34871  df-trl 34926
This theorem is referenced by:  cdlemk19u1  35737
  Copyright terms: Public domain W3C validator