 Home Metamath Proof ExplorerTheorem List (p. 381 of 425) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-26941) Hilbert Space Explorer (26942-28466) Users' Mathboxes (28467-42420)

Theorem List for Metamath Proof Explorer - 38001-38100   *Has distinct variable group(s)
TypeLabelDescription
Statement

TheoremexbirVD 38001 Virtual deduction proof of exbir 37596. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))    ▶   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))   ) 2:: ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))   ,    (𝜑 ∧ 𝜓)   ▶   (𝜑 ∧ 𝜓)   ) 3:: ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))   ,    (𝜑 ∧ 𝜓), 𝜃   ▶   𝜃   ) 5:1,2,?: e12 37863 ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)), (𝜑 ∧ 𝜓)   ▶   (𝜒 ↔ 𝜃)   ) 6:3,5,?: e32 37897 ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)), (𝜑 ∧ 𝜓), 𝜃   ▶   𝜒   ) 7:6: ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)), (𝜑 ∧ 𝜓)   ▶   (𝜃 → 𝜒)   ) 8:7: ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))    ▶   ((𝜑 ∧ 𝜓) → (𝜃 → 𝜒))   ) 9:8,?: e1a 37764 ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))   ▶   (𝜑 → (𝜓 → (𝜃 → 𝜒)))   ) qed:9: ⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜃 → 𝜒))))
(Contributed by Alan Sare, 13-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜃𝜒))))

TheoremexbiriVD 38002 Virtual deduction proof of exbiri 649. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 h1:: ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) 2:: ⊢ (   𝜑   ▶   𝜑   ) 3:: ⊢ (   𝜑   ,   𝜓   ▶   𝜓   ) 4:: ⊢ (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜃   ) 5:2,1,?: e10 37831 ⊢ (   𝜑   ▶   (𝜓 → (𝜒 ↔ 𝜃))   ) 6:3,5,?: e21 37869 ⊢ (   𝜑   ,   𝜓   ▶   (𝜒 ↔ 𝜃)   ) 7:4,6,?: e32 37897 ⊢ (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   ) 8:7: ⊢ (   𝜑   ,   𝜓   ▶   (𝜃 → 𝜒)   ) 9:8: ⊢ (   𝜑   ▶   (𝜓 → (𝜃 → 𝜒))   ) qed:9: ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → (𝜓 → (𝜃𝜒)))

Theoremrspsbc2VD 38003* Virtual deduction proof of rspsbc2 37656. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:: ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ▶   𝐶 ∈ 𝐷   ) 3:: ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑   ) 4:1,3,?: e13 37887 ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   [𝐴 / 𝑥]∀𝑦 ∈ 𝐷𝜑   ) 5:1,4,?: e13 37887 ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑦 ∈ 𝐷[𝐴 / 𝑥]𝜑   ) 6:2,5,?: e23 37894 ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   [𝐶 / 𝑦][𝐴 / 𝑥]𝜑   ) 7:6: ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ▶   (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)   ) 8:7: ⊢ (   𝐴 ∈ 𝐵   ▶   (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))   ) qed:8: ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))

Theorem3impexpVD 38004 Virtual deduction proof of 3impexp 1280. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ) 2:: ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) 3:1,2,?: e10 37831 ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ▶   (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃)   ) 4:3,?: e1a 37764 ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ▶   ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃))   ) 5:4,?: e1a 37764 ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ▶   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ) 6:5: ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) → (𝜑 → (𝜓 → (𝜒 → 𝜃)))) 7:: ⊢ (   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ▶   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ) 8:7,?: e1a 37764 ⊢ (   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ▶   ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃))   ) 9:8,?: e1a 37764 ⊢ (   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ▶   (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃)   ) 10:2,9,?: e01 37828 ⊢ (   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ) 11:10: ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) qed:6,11,?: e00 37907 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))

Theorem3impexpbicomVD 38005 Virtual deduction proof of 3impexpbicom 37597. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))   ) 2:: ⊢ ((𝜃 ↔ 𝜏) ↔ (𝜏 ↔ 𝜃)) 3:1,2,?: e10 37831 ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃))   ) 4:3,?: e1a 37764 ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))   ▶   (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))   ) 5:4: ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) → (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) 6:: ⊢ (   (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))   ▶   (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))   ) 7:6,?: e1a 37764 ⊢ (   (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃))   ) 8:7,2,?: e10 37831 ⊢ (   (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))   ) 9:8: ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))) qed:5,9,?: e00 37907 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))

Theorem3impexpbicomiVD 38006 Virtual deduction proof of 3impexpbicomi 37598. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 h1:: ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) qed:1,?: e0a 37911 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓𝜒) → (𝜃𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))

Theoremsbcel1gvOLD 38007* Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 17-Aug-2018. Use sbcel1v 3366 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵))

TheoremsbcoreleleqVD 38008* Virtual deduction proof of sbcoreleleq 37657. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:1,?: e1a 37764 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)   ) 3:1,?: e1a 37764 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)   ) 4:1,?: e1a 37764 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴)   ) 5:2,3,4,?: e111 37811 ⊢ (   𝐴 ∈ 𝐵   ▶   ((𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))   ) 6:1,?: e1a 37764 ⊢ (   𝐴 ∈ 𝐵    ▶   ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))   ) 7:5,6: e11 37825 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))   ) qed:7: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))

Theoremhbra2VD 38009* Virtual deduction proof of nfra2 2834. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑 → ∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 2:: ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔ ∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 3:1,2,?: e00 37907 ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 → ∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 4:2: ⊢ ∀𝑦(∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔ ∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 5:4,?: e0a 37911 ⊢ (∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔ ∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) qed:3,5,?: e00 37907 ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 → ∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝑥𝐴𝑦𝐵 𝜑)

TheoremtratrbVD 38010* Virtual deduction proof of tratrb 37658. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)    ▶   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ) 2:1,?: e1a 37764 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   Tr 𝐴   ) 3:1,?: e1a 37764 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)    ▶   ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)   ) 4:1,?: e1a 37764 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   𝐵 ∈ 𝐴   ) 5:: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ) 6:5,?: e2 37768 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   𝑥 ∈ 𝑦   ) 7:5,?: e2 37768 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   𝑦 ∈ 𝐵   ) 8:2,7,4,?: e121 37793 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   𝑦 ∈ 𝐴   ) 9:2,6,8,?: e122 37790 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   𝑥 ∈ 𝐴   ) 10:: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵), 𝐵 ∈ 𝑥   ▶   𝐵 ∈ 𝑥   ) 11:6,7,10,?: e223 37772 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵), 𝐵 ∈ 𝑥   ▶   (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)   ) 12:11: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   (𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥))   ) 13:: ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥) 14:12,13,?: e20 37866 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   ¬ 𝐵 ∈ 𝑥   ) 15:: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵   ▶   𝑥 = 𝐵   ) 16:7,15,?: e23 37894 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵   ▶   𝑦 ∈ 𝑥   ) 17:6,16,?: e23 37894 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵   ▶   (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)   ) 18:17: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   (𝑥 = 𝐵 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥))   ) 19:: ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) 20:18,19,?: e20 37866 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   ¬ 𝑥 = 𝐵   ) 21:3,?: e1a 37764 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)   ) 22:21,9,4,?: e121 37793 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)   ) 23:22,?: e2 37768 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   [𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)   ) 24:4,23,?: e12 37863 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵)   ) 25:14,20,24,?: e222 37773 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   𝑥 ∈ 𝐵   ) 26:25: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)   ) 27:: ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 28:27,?: e0a 37911 ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)) 29:28,26: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)    ▶   ∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)   ) 30:: ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑥∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 31:30,?: e0a 37911 ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)) 32:31,29: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   ∀𝑥 ∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)   ) 33:32,?: e1a 37764 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   Tr 𝐵   ) qed:33: ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐵)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)

Theoremal2imVD 38011 Virtual deduction proof of al2im 1717. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   ∀𝑥(𝜑 → (𝜓 → 𝜒))    ▶   ∀𝑥(𝜑 → (𝜓 → 𝜒))   ) 2:1,?: e1a 37764 ⊢ (   ∀𝑥(𝜑 → (𝜓 → 𝜒))    ▶   (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒))   ) 3:: ⊢ (∀𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒)) 4:2,3,?: e10 37831 ⊢ (   ∀𝑥(𝜑 → (𝜓 → 𝜒))    ▶   (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))   ) qed:4: ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))

Theoremsyl5impVD 38012 Virtual deduction proof of syl5imp 37630. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   (𝜑 → (𝜓 → 𝜒))   ▶   (𝜑 → (𝜓 → 𝜒))   ) 2:1,?: e1a 37764 ⊢ (   (𝜑 → (𝜓 → 𝜒))   ▶   (𝜓 → (𝜑 → 𝜒))   ) 3:: ⊢ (   (𝜑 → (𝜓 → 𝜒))   ,   (𝜃 → 𝜓)   ▶   (𝜃 → 𝜓)   ) 4:3,2,?: e21 37869 ⊢ (   (𝜑 → (𝜓 → 𝜒))   ,   (𝜃 → 𝜓)   ▶   (𝜃 → (𝜑 → 𝜒))   ) 5:4,?: e2 37768 ⊢ (   (𝜑 → (𝜓 → 𝜒))   ,   (𝜃 → 𝜓)   ▶   (𝜑 → (𝜃 → 𝜒))   ) 6:5: ⊢ (   (𝜑 → (𝜓 → 𝜒))   ▶   ((𝜃 → 𝜓) → (𝜑 → (𝜃 → 𝜒)))   ) qed:6: ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜓) → (𝜑 → (𝜃 → 𝜒))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → ((𝜃𝜓) → (𝜑 → (𝜃𝜒))))

TheoremidiVD 38013 Virtual deduction proof of idiALT 37595. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 h1:: ⊢ 𝜑 qed:1,?: e0a 37911 ⊢ 𝜑
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       𝜑

TheoremancomstVD 38014 Closed form of ancoms 467. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) qed:1,?: e0a 37911 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒))
The proof of ancomst 466 is derived automatically from it. (Contributed by Alan Sare, 25-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → 𝜒) ↔ ((𝜓𝜑) → 𝜒))

Theoremssralv2VD 38015* Quantification restricted to a subclass for two quantifiers. ssralv 3533 for two quantifiers. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ssralv2 37649 is ssralv2VD 38015 without virtual deductions and was automatically derived from ssralv2VD 38015.
 1:: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ▶   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ) 2:: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑   ) 3:1: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ▶   𝐴 ⊆ 𝐵   ) 4:3,2: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐷𝜑   ) 5:4: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷𝜑)   ) 6:5: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷𝜑)   ) 7:: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴   ▶   𝑥 ∈ 𝐴   ) 8:7,6: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴   ▶   ∀𝑦 ∈ 𝐷𝜑   ) 9:1: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ▶   𝐶 ⊆ 𝐷   ) 10:9,8: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴   ▶   ∀𝑦 ∈ 𝐶𝜑   ) 11:10: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶𝜑)   ) 12:: ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → ∀𝑥(𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) 13:: ⊢ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → ∀𝑥∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑) 14:12,13,11: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶𝜑)   ) 15:14: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑   ) 16:15: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)    ▶   (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑)   ) qed:16: ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑))
(Contributed by Alan Sare, 10-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))

TheoremordelordALTVD 38016 An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 5552 using the Axiom of Regularity indirectly through dford2 8280. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that E Fr 𝐴 because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT 37659 is ordelordALTVD 38016 without virtual deductions and was automatically derived from ordelordALTVD 38016 using the tools program translate..without..overwriting.cmd and Metamath's minimize command.
 1:: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ) 2:1: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   Ord 𝐴   ) 3:1: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   𝐵 ∈ 𝐴   ) 4:2: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   Tr 𝐴   ) 5:2: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)   ) 6:4,3: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   𝐵 ⊆ 𝐴   ) 7:6,6,5: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)   ) 8:: ⊢ ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 9:8: ⊢ ∀𝑦((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 10:9: ⊢ ∀𝑦 ∈ 𝐴((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 11:10: ⊢ (∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 12:11: ⊢ ∀𝑥(∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 13:12: ⊢ ∀𝑥 ∈ 𝐴(∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 14:13: ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 15:14,5: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)   ) 16:4,15,3: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   Tr 𝐵   ) 17:16,7: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   Ord 𝐵   ) qed:17: ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵)
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((Ord 𝐴𝐵𝐴) → Ord 𝐵)

TheoremequncomVD 38017 If a class equals the union of two other classes, then it equals the union of those two classes commuted. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncom 3624 is equncomVD 38017 without virtual deductions and was automatically derived from equncomVD 38017.
 1:: ⊢ (   𝐴 = (𝐵 ∪ 𝐶)   ▶   𝐴 = (𝐵 ∪ 𝐶)   ) 2:: ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) 3:1,2: ⊢ (   𝐴 = (𝐵 ∪ 𝐶)   ▶   𝐴 = (𝐶 ∪ 𝐵)   ) 4:3: ⊢ (𝐴 = (𝐵 ∪ 𝐶) → 𝐴 = (𝐶 ∪ 𝐵)) 5:: ⊢ (   𝐴 = (𝐶 ∪ 𝐵)   ▶   𝐴 = (𝐶 ∪ 𝐵)   ) 6:5,2: ⊢ (   𝐴 = (𝐶 ∪ 𝐵)   ▶   𝐴 = (𝐵 ∪ 𝐶)   ) 7:6: ⊢ (𝐴 = (𝐶 ∪ 𝐵) → 𝐴 = (𝐵 ∪ 𝐶)) 8:4,7: ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵))
(Contributed by Alan Sare, 17-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))

TheoremequncomiVD 38018 Inference form of equncom 3624. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncomi 3625 is equncomiVD 38018 without virtual deductions and was automatically derived from equncomiVD 38018.
 h1:: ⊢ 𝐴 = (𝐵 ∪ 𝐶) qed:1: ⊢ 𝐴 = (𝐶 ∪ 𝐵)
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 = (𝐵𝐶)       𝐴 = (𝐶𝐵)

TheoremsucidALTVD 38019 A set belongs to its successor. Alternate proof of sucid 5611. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucidALT 38020 is sucidALTVD 38019 without virtual deductions and was automatically derived from sucidALTVD 38019. This proof illustrates that completeusersproof.cmd will generate a Metamath proof from any User's Proof which is "conventional" in the sense that no step is a virtual deduction, provided that all necessary unification theorems and transformation deductions are in set.mm. completeusersproof.cmd automatically converts such a conventional proof into a Virtual Deduction proof for which each step happens to be a 0-virtual hypothesis virtual deduction. The user does not need to search for reference theorem labels or deduction labels nor does he(she) need to use theorems and deductions which unify with reference theorems and deductions in set.mm. All that is necessary is that each theorem or deduction of the User's Proof unifies with some reference theorem or deduction in set.mm or is a semantic variation of some theorem or deduction which unifies with some reference theorem or deduction in set.mm. The definition of "semantic variation" has not been precisely defined. If it is obvious that a theorem or deduction has the same meaning as another theorem or deduction, then it is a semantic variation of the latter theorem or deduction. For example, step 4 of the User's Proof is a semantic variation of the definition (axiom) suc 𝐴 = (𝐴 ∪ {𝐴}), which unifies with df-suc 5536, a reference definition (axiom) in set.mm. Also, a theorem or deduction is said to be a semantic variation of another theorem or deduction if it is obvious upon cursory inspection that it has the same meaning as a weaker form of the latter theorem or deduction. For example, the deduction Ord 𝐴 infers 𝑥𝐴𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥) is a semantic variation of the theorem (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥))), which unifies with the set.mm reference definition (axiom) dford2 8280.
 h1:: ⊢ 𝐴 ∈ V 2:1: ⊢ 𝐴 ∈ {𝐴} 3:2: ⊢ 𝐴 ∈ ({𝐴} ∪ 𝐴) 4:: ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴) qed:3,4: ⊢ 𝐴 ∈ suc 𝐴
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴

TheoremsucidALT 38020 A set belongs to its successor. This proof was automatically derived from sucidALTVD 38019 using translatewithout_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴

TheoremsucidVD 38021 A set belongs to its successor. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucid 5611 is sucidVD 38021 without virtual deductions and was automatically derived from sucidVD 38021.
 h1:: ⊢ 𝐴 ∈ V 2:1: ⊢ 𝐴 ∈ {𝐴} 3:2: ⊢ 𝐴 ∈ (𝐴 ∪ {𝐴}) 4:: ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) qed:3,4: ⊢ 𝐴 ∈ suc 𝐴
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴

Theoremimbi12VD 38022 Implication form of imbi12i 338. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi12 334 is imbi12VD 38022 without virtual deductions and was automatically derived from imbi12VD 38022.
 1:: ⊢ (   (𝜑 ↔ 𝜓)   ▶   (𝜑 ↔ 𝜓)   ) 2:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   (𝜒 ↔ 𝜃)   ) 3:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜑 → 𝜒)   ▶   (𝜑 → 𝜒)   ) 4:1,3: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜑 → 𝜒)   ▶   (𝜓 → 𝜒)   ) 5:2,4: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜑 → 𝜒)   ▶   (𝜓 → 𝜃)   ) 6:5: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   ((𝜑 → 𝜒) → (𝜓 → 𝜃))   ) 7:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜓 → 𝜃)   ▶   (𝜓 → 𝜃)   ) 8:1,7: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜓 → 𝜃)   ▶   (𝜑 → 𝜃)   ) 9:2,8: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜓 → 𝜃)   ▶   (𝜑 → 𝜒)   ) 10:9: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   ((𝜓 → 𝜃) → (𝜑 → 𝜒))   ) 11:6,10: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))   ) 12:11: ⊢ (   (𝜑 ↔ 𝜓)   ▶   ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))   ) qed:12: ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃))))

Theoremimbi13VD 38023 Join three logical equivalences to form equivalence of implications. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi13 37638 is imbi13VD 38023 without virtual deductions and was automatically derived from imbi13VD 38023.
 1:: ⊢ (   (𝜑 ↔ 𝜓)   ▶   (𝜑 ↔ 𝜓)   ) 2:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   (𝜒 ↔ 𝜃)   ) 3:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜏 ↔ 𝜂)   ▶   (𝜏 ↔ 𝜂)   ) 4:2,3: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜏 ↔ 𝜂)   ▶   ((𝜒 → 𝜏) ↔ (𝜃 → 𝜂))   ) 5:1,4: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜏 ↔ 𝜂)   ▶   ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂)))   ) 6:5: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂))))   ) 7:6: ⊢ (   (𝜑 ↔ 𝜓)   ▶   ((𝜒 ↔ 𝜃) → ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂)))))   ) qed:7: ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂))))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))))

Theoremsbcim2gVD 38024 Distribution of class substitution over a left-nested implication. Similar to sbcimg 3348. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcim2g 37660 is sbcim2gVD 38024 without virtual deductions and was automatically derived from sbcim2gVD 38024.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ) 3:1,2: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))   ) 4:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 5:3,4: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 6:5: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))   ) 7:: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 8:4,7: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))   ) 9:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))   ) 10:8,9: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ) 11:10: ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)))   ) 12:6,11: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))   ) qed:12: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))

TheoremsbcbiVD 38025 Implication form of sbcbiiOLD 37653. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcbi 37661 is sbcbiVD 38025 without virtual deductions and was automatically derived from sbcbiVD 38025.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:: ⊢ (   𝐴 ∈ 𝐵   ,   ∀𝑥(𝜑 ↔ 𝜓)    ▶   ∀𝑥(𝜑 ↔ 𝜓)   ) 3:1,2: ⊢ (   𝐴 ∈ 𝐵   ,   ∀𝑥(𝜑 ↔ 𝜓)    ▶   [𝐴 / 𝑥](𝜑 ↔ 𝜓)   ) 4:1,3: ⊢ (   𝐴 ∈ 𝐵   ,   ∀𝑥(𝜑 ↔ 𝜓)    ▶   ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)   ) 5:4: ⊢ (   𝐴 ∈ 𝐵   ▶   (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))   ) qed:5: ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))

TheoremtrsbcVD 38026* Formula-building inference rule for class substitution, substituting a class variable for the setvar variable of the transitivity predicate. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trsbc 37662 is trsbcVD 38026 without virtual deductions and was automatically derived from trsbcVD 38026.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)   ) 3:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴)   ) 4:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴)   ) 5:1,2,3,4: ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))   ) 6:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)))   ) 7:5,6: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))   ) 8:: ⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) 9:7,8: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 10:: ⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) 11:10: ⊢ ∀𝑥((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) 12:1,11: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ [𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   ) 13:9,12: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 14:13: ⊢ (   𝐴 ∈ 𝐵   ▶   ∀𝑦([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 15:14: ⊢ (   𝐴 ∈ 𝐵   ▶   (∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 16:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   ) 17:15,16: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 18:17: ⊢ (   𝐴 ∈ 𝐵   ▶   ∀𝑧([𝐴 / 𝑥]∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 19:18: ⊢ (   𝐴 ∈ 𝐵   ▶   (∀𝑧[𝐴 / 𝑥]∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 20:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑧∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   ) 21:19,20: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑧∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 22:: ⊢ (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) 23:21,22: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑧∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ Tr 𝐴)   ) 24:: ⊢ (Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) 25:24: ⊢ ∀𝑥(Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) 26:1,25: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥 ↔ [𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   ) 27:23,26: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)   ) qed:27: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))

TheoremtruniALTVD 38027* The union of a class of transitive sets is transitive. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. truniALT 37663 is truniALTVD 38027 without virtual deductions and was automatically derived from truniALTVD 38027.
 1:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   ∀𝑥 ∈ 𝐴 Tr 𝑥   ) 2:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ) 3:2: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   𝑧 ∈ 𝑦   ) 4:2: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   𝑦 ∈ ∪ 𝐴   ) 5:4: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   ∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ) 6:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ) 7:6: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   𝑦 ∈ 𝑞   ) 8:6: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   𝑞 ∈ 𝐴   ) 9:1,8: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   [𝑞 / 𝑥]Tr 𝑥   ) 10:8,9: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   Tr 𝑞   ) 11:3,7,10: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   𝑧 ∈ 𝑞   ) 12:11,8: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   𝑧 ∈ ∪ 𝐴   ) 13:12: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴)   ) 14:13: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   ∀𝑞((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴)   ) 15:14: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   (∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴)   ) 16:5,15: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   𝑧 ∈ ∪ 𝐴   ) 17:16: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴)   ) 18:17: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥    ▶   ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴)   ) 19:18: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   Tr ∪ 𝐴   ) qed:19: ⊢ (∀𝑥 ∈ 𝐴Tr 𝑥 → Tr ∪ 𝐴)
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)

Theoremee33VD 38028 Non-virtual deduction form of e33 37873. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ee33 37639 is ee33VD 38028 without virtual deductions and was automatically derived from ee33VD 38028.
 h1:: ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) h2:: ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) h3:: ⊢ (𝜃 → (𝜏 → 𝜂)) 4:1,3: ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 → 𝜂)))) 5:4: ⊢ (𝜏 → (𝜑 → (𝜓 → (𝜒 → 𝜂)))) 6:2,5: ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 → 𝜂)))))) 7:6: ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 → 𝜂))))) 8:7: ⊢ (𝜒 → (𝜑 → (𝜓 → (𝜒 → 𝜂)))) qed:8: ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜑 → (𝜓 → (𝜒𝜏)))    &   (𝜃 → (𝜏𝜂))       (𝜑 → (𝜓 → (𝜒𝜂)))

TheoremtrintALTVD 38029* The intersection of a class of transitive sets is transitive. Virtual deduction proof of trintALT 38030. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trintALT 38030 is trintALTVD 38029 without virtual deductions and was automatically derived from trintALTVD 38029.
 1:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   ∀𝑥 ∈ 𝐴Tr 𝑥   ) 2:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ) 3:2: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   𝑧 ∈ 𝑦   ) 4:2: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   𝑦 ∈ ∩ 𝐴   ) 5:4: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   ∀𝑞 ∈ 𝐴𝑦 ∈ 𝑞   ) 6:5: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   (𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞)   ) 7:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴), 𝑞 ∈ 𝐴   ▶   𝑞 ∈ 𝐴   ) 8:7,6: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴), 𝑞 ∈ 𝐴   ▶   𝑦 ∈ 𝑞   ) 9:7,1: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴), 𝑞 ∈ 𝐴   ▶   [𝑞 / 𝑥]Tr 𝑥   ) 10:7,9: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴), 𝑞 ∈ 𝐴   ▶   Tr 𝑞   ) 11:10,3,8: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴), 𝑞 ∈ 𝐴   ▶   𝑧 ∈ 𝑞   ) 12:11: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   (𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞)   ) 13:12: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   ∀𝑞(𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞)   ) 14:13: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   ∀𝑞 ∈ 𝐴𝑧 ∈ 𝑞   ) 15:3,14: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   𝑧 ∈ ∩ 𝐴   ) 16:15: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴)   ) 17:16: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴)   ) 18:17: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   Tr ∩ 𝐴   ) qed:18: ⊢ (∀𝑥 ∈ 𝐴Tr 𝑥 → Tr ∩ 𝐴)
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)

TheoremtrintALT 38030* The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. trintALT 38030 is an alternate proof of trint 4594. trintALT 38030 is trintALTVD 38029 without virtual deductions and was automatically derived from trintALTVD 38029 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)

Theoremundif3VD 38031 The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual deduction proof of undif3 3750. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. undif3 3750 is undif3VD 38031 without virtual deductions and was automatically derived from undif3VD 38031.
 1:: ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐶))) 2:: ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) 3:2: ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 4:1,3: ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 5:: ⊢ (   𝑥 ∈ 𝐴   ▶   𝑥 ∈ 𝐴   ) 6:5: ⊢ (   𝑥 ∈ 𝐴   ▶   (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)   ) 7:5: ⊢ (   𝑥 ∈ 𝐴   ▶   (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)   ) 8:6,7: ⊢ (   𝑥 ∈ 𝐴   ▶   ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))   ) 9:8: ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ ( ¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 10:: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ) 11:10: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   𝑥 ∈ 𝐵   ) 12:10: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   ¬ 𝑥 ∈ 𝐶    ) 13:11: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)   ) 14:12: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)   ) 15:13,14: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))   ) 16:15: ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 17:9,16: ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 18:: ⊢ (   (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)   ) 19:18: ⊢ (   (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   𝑥 ∈ 𝐴   ) 20:18: ⊢ (   (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   ¬ 𝑥 ∈ 𝐶    ) 21:18: ⊢ (   (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))   ) 22:21: ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 23:: ⊢ (   (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)   ▶   (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)   ) 24:23: ⊢ (   (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)   ▶   𝑥 ∈ 𝐴   ) 25:24: ⊢ (   (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)   ▶   (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))   ) 26:25: ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 27:10: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))   ) 28:27: ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 29:: ⊢ (   (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)   ▶   (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)   ) 30:29: ⊢ (   (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)   ▶   𝑥 ∈ 𝐴   ) 31:30: ⊢ (   (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)   ▶   (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))   ) 32:31: ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 33:22,26: ⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 34:28,32: ⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 35:33,34: ⊢ ((((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) ∨ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 36:: ⊢ ((((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) ∨ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 37:36,35: ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 38:17,37: ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 39:: ⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) 40:39: ⊢ (¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) 41:: ⊢ (¬ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴) ↔ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) 42:40,41: ⊢ (¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) 43:: ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 )) 44:43,42: ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴))) 45:: ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) ↔ ( 𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ (𝐶 ∖ 𝐴))) 46:45,44: ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) ↔ ( (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 47:4,38: ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 48:46,47: ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴))) 49:48: ⊢ ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴))) qed:49: ⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴))
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))

TheoremsbcssgVD 38032 Virtual deduction proof of sbcssg 3938. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcssg 3938 is sbcssgVD 38032 without virtual deductions and was automatically derived from sbcssgVD 38032.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) 3:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)   ) 4:2,3: ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥]𝑦 ∈ 𝐶 → [𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷 ))   ) 5:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 → [𝐴 / 𝑥]𝑦 ∈ 𝐷))   ) 6:4,5: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 7:6: ⊢ (   𝐴 ∈ 𝐵   ▶   ∀𝑦([𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 8:7: ⊢ (   𝐴 ∈ 𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷) )   ) 9:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷))   ) 10:8,9: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷) )   ) 11:: ⊢ (𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) 110:11: ⊢ ∀𝑥(𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) 12:1,110: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ [𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷))   ) 13:10,12: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 14:: ⊢ (⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ↔ ∀ 𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) 15:13,14: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷)   ) qed:15: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋ 𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

TheoremcsbingVD 38033 Virtual deduction proof of csbingOLD 37967. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbingOLD 37967 is csbingVD 38033 without virtual deductions and was automatically derived from csbingVD 38033.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:: ⊢ (𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) } 20:2: ⊢ ∀𝑥(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} 30:1,20: ⊢ (   𝐴 ∈ 𝐵   ▶   [𝐴 / 𝑥](𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}   ) 3:1,30: ⊢ (   𝐴 ∈ 𝐵   ▶   ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}   ) 4:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}   ) 5:3,4: ⊢ (   𝐴 ∈ 𝐵   ▶   ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}   ) 6:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) 7:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)   ) 8:6,7: ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷) )   ) 9:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷))   ) 10:9,8: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 11:10: ⊢ (   𝐴 ∈ 𝐵   ▶   ∀𝑦([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 12:11: ⊢ (   𝐴 ∈ 𝐵   ▶   {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)}   ) 13:5,12: ⊢ (   𝐴 ∈ 𝐵   ▶   ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)}   ) 14:: ⊢ (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) = { 𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} 15:13,14: ⊢ (   𝐴 ∈ 𝐵   ▶   ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)   ) qed:15: ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = ( ⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

TheoremonfrALTlem5VD 38034* Virtual deduction proof of onfrALTlem5 37669. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 37669 is onfrALTlem5VD 38034 without virtual deductions and was automatically derived from onfrALTlem5VD 38034.
 1:: ⊢ 𝑎 ∈ V 2:1: ⊢ (𝑎 ∩ 𝑥) ∈ V 3:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎 ∩ 𝑥) = ∅) 4:3: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ ¬ (𝑎 ∩ 𝑥) = ∅) 5:: ⊢ ((𝑎 ∩ 𝑥) ≠ ∅ ↔ ¬ (𝑎 ∩ 𝑥 ) = ∅) 6:4,5: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎 ∩ 𝑥) ≠ ∅) 7:2: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅) 8:: ⊢ (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅) 9:8: ⊢ ∀𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅) 10:2,9: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅) 11:7,10: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅) 12:6,11: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔ ( 𝑎 ∩ 𝑥) ≠ ∅) 13:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥 ) ↔ (𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥)) 14:12,13: ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅)) 15:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅)) 16:15,14: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅)) 17:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ( ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦) 18:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 = (𝑎 ∩ 𝑥) 19:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦 = 𝑦 20:18,19: ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦) = ((𝑎 ∩ 𝑥) ∩ 𝑦) 21:17,20: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = (( 𝑎 ∩ 𝑥) ∩ 𝑦) 22:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅ ↔ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ⦋(𝑎 ∩ 𝑥) / 𝑏⦌ ∅) 23:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ = ∅ 24:21,23: ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 25:22,24: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 26:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ↔ 𝑦 ∈ (𝑎 ∩ 𝑥)) 27:25,26: ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [ (𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ (( 𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 28:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅)) 29:27,28: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 30:29: ⊢ ∀𝑦([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 31:30: ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 32:: ⊢ (∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ )) 33:31,32: ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 34:2: ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ ( 𝑏 ∩ 𝑦) = ∅)) 35:33,34: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅) 36:: ⊢ (∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦 (𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅)) 37:36: ⊢ ∀𝑏(∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅)) 38:2,37: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅)) 39:35,38: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 40:16,39: ⊢ (([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 41:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅)) qed:40,41: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥 )((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))

TheoremonfrALTlem4VD 38035* Virtual deduction proof of onfrALTlem4 37670. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem4 37670 is onfrALTlem4VD 38035 without virtual deductions and was automatically derived from onfrALTlem4VD 38035.
 1:: ⊢ 𝑦 ∈ V 2:1: ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ ⦋ 𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌∅) 3:1: ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (⦋𝑦 / 𝑥⦌ 𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥) 4:1: ⊢ ⦋𝑦 / 𝑥⦌𝑎 = 𝑎 5:1: ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 6:4,5: ⊢ (⦋𝑦 / 𝑥⦌𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥) = ( 𝑎 ∩ 𝑦) 7:3,6: ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (𝑎 ∩ 𝑦) 8:1: ⊢ ⦋𝑦 / 𝑥⦌∅ = ∅ 9:7,8: ⊢ (⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌ ∅ ↔ (𝑎 ∩ 𝑦) = ∅) 10:2,9: ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ (𝑎 ∩ 𝑦) = ∅) 11:1: ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎) 12:11,10: ⊢ (([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥]( 𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) 13:1: ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅)) qed:13,12: ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))

TheoremonfrALTlem3VD 38036* Virtual deduction proof of onfrALTlem3 37671. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem3 37671 is onfrALTlem3VD 38036 without virtual deductions and was automatically derived from onfrALTlem3VD 38036.
 1:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ) 2:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ) 3:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   𝑥 ∈ 𝑎   ) 4:1: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ⊆ On   ) 5:3,4: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   𝑥 ∈ On   ) 6:5: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   Ord 𝑥   ) 7:6: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶    E We 𝑥   ) 8:: ⊢ (𝑎 ∩ 𝑥) ⊆ 𝑥 9:7,8: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶    E We (𝑎 ∩ 𝑥)   ) 10:9: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶    E Fr (𝑎 ∩ 𝑥)   ) 11:10: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∀𝑏((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅)   ) 12:: ⊢ 𝑥 ∈ V 13:12,8: ⊢ (𝑎 ∩ 𝑥) ∈ V 14:13,11: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   [(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅)   ) 15:: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)( (𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 16:14,15: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ ( 𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)   ) 17:: ⊢ (𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) 18:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ¬ (𝑎 ∩ 𝑥) = ∅   ) 19:18: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   (𝑎 ∩ 𝑥) ≠ ∅   ) 20:17,19: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅)   ) qed:16,20: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅   )

Theoremsimplbi2comtVD 38037 Virtual deduction proof of simplbi2comt 653. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. simplbi2comt 653 is simplbi2comtVD 38037 without virtual deductions and was automatically derived from simplbi2comtVD 38037.
 1:: ⊢ (   (𝜑 ↔ (𝜓 ∧ 𝜒))   ▶   (𝜑 ↔ ( 𝜓 ∧ 𝜒))   ) 2:1: ⊢ (   (𝜑 ↔ (𝜓 ∧ 𝜒))   ▶   ((𝜓 ∧ 𝜒 ) → 𝜑)   ) 3:2: ⊢ (   (𝜑 ↔ (𝜓 ∧ 𝜒))   ▶   (𝜓 → (𝜒 → 𝜑))   ) 4:3: ⊢ (   (𝜑 ↔ (𝜓 ∧ 𝜒))   ▶   (𝜒 → (𝜓 → 𝜑))   ) qed:4: ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑)))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ↔ (𝜓𝜒)) → (𝜒 → (𝜓𝜑)))

TheoremonfrALTlem2VD 38038* Virtual deduction proof of onfrALTlem2 37673. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 37673 is onfrALTlem2VD 38038 without virtual deductions and was automatically derived from onfrALTlem2VD 38038.
 1:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ) 2:1: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ (𝑎 ∩ 𝑦)   ) 3:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ 𝑎   ) 4:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ) 5:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ) 6:5: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   𝑥 ∈ 𝑎   ) 7:4: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ⊆ On   ) 8:6,7: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   𝑥 ∈ On   ) 9:8: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   Ord 𝑥   ) 10:9: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   Tr 𝑥   ) 11:1: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑦 ∈ (𝑎 ∩ 𝑥)   ) 12:11: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑦 ∈ 𝑥   ) 13:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ 𝑦   ) 14:10,12,13: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ 𝑥   ) 15:3,14: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ (𝑎 ∩ 𝑥)   ) 16:13,15: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦)   ) 17:16: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦))   ) 18:17: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   ∀𝑧(𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦))   ) 19:18: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎 ∩ 𝑦) ⊆ ((𝑎 ∩ 𝑥) ∩ 𝑦)   ) 20:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)   ) 21:20: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅   ) 22:19,21: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎 ∩ 𝑦) = ∅   ) 23:20: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦 ∈ (𝑎 ∩ 𝑥)   ) 24:23: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦 ∈ 𝑎   ) 25:22,24: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)   ) 26:25: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))   ) 27:26: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∀𝑦((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥 ) ∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))   ) 28:27: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   (∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥 ) ∩ 𝑦) = ∅) → ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))   ) 29:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅   ) 30:29: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)   ) 31:28,30: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)   ) qed:31: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )

TheoremonfrALTlem1VD 38039* Virtual deduction proof of onfrALTlem1 37675. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem1 37675 is onfrALTlem1VD 38039 without virtual deductions and was automatically derived from onfrALTlem1VD 38039.
 1:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ) 2:1: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ) 3:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)    ) 4:: ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅ ) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) 5:4: ⊢ ∀𝑦([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) 6:5: ⊢ (∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) 7:3,6: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)   ) 8:: ⊢ (∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ ↔ ∃𝑦( 𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) qed:7,8: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )

TheoremonfrALTVD 38040 Virtual deduction proof of onfrALT 37676. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALT 37676 is onfrALTVD 38040 without virtual deductions and was automatically derived from onfrALTVD 38040.
 1:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   ) 2:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   ) 3:1: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥 ∈ 𝑎   ▶    (¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 4:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥 ∈ 𝑎   ▶    ((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 5:: ⊢ ((𝑎 ∩ 𝑥) = ∅ ∨ ¬ (𝑎 ∩ 𝑥) = ∅) 6:5,4,3: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥 ∈ 𝑎   ▶    ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   ) 7:6: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 8:7: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   ∀𝑥(𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 9:8: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (∃𝑥𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 10:: ⊢ (𝑎 ≠ ∅ ↔ ∃𝑥𝑥 ∈ 𝑎) 11:9,10: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ≠ ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 12:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ) 13:12: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ≠ ∅   ) 14:13,11: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   ) 15:14: ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) 16:15: ⊢ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) qed:16: ⊢ E Fr On
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
E Fr On

Theoremcsbeq2gVD 38041 Virtual deduction proof of csbeq2gOLD 37677. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbeq2gOLD 37677 is csbeq2gVD 38041 without virtual deductions and was automatically derived from csbeq2gVD 38041.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   (∀𝑥𝐵 = 𝐶 → [𝐴 / 𝑥] 𝐵 = 𝐶)   ) 3:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)   ) 4:2,3: ⊢ (   𝐴 ∈ 𝑉   ▶   (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥 ⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)   ) qed:4: ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌ 𝐵 = ⦋𝐴 / 𝑥⦌𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))

TheoremcsbsngVD 38042 Virtual deduction proof of csbsng 4093. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbsng 4093 is csbsngVD 38042 without virtual deductions and was automatically derived from csbsngVD 38042.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴 / 𝑥⦌𝐵)   ) 3:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌𝑦 = 𝑦   ) 4:3: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴 / 𝑥⦌𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵)   ) 5:2,4: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵)   ) 6:5: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑦([𝐴 / 𝑥]𝑦 = 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵)   ) 7:6: ⊢ (   𝐴 ∈ 𝑉   ▶   {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}   ) 8:1: ⊢ (   𝐴 ∈ 𝑉   ▶   {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵} = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵}   ) 9:7,8: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}   ) 10:: ⊢ {𝐵} = {𝑦 ∣ 𝑦 = 𝐵} 11:10: ⊢ ∀𝑥{𝐵} = {𝑦 ∣ 𝑦 = 𝐵} 12:1,11: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝐵} = ⦋ 𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵}   ) 13:9,12: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝐵} = { 𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}   ) 14:: ⊢ {⦋𝐴 / 𝑥⦌𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} 15:13,14: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝐵} = { ⦋𝐴 / 𝑥⦌𝐵}   ) qed:15: ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋ 𝐴 / 𝑥⦌𝐵})
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})

TheoremcsbxpgVD 38043 Virtual deduction proof of csbxpgOLD 37966. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbxpgOLD 37966 is csbxpgVD 38043 without virtual deductions and was automatically derived from csbxpgVD 38043.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 3:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌𝑤 = 𝑤   ) 4:3: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 5:2,4: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 6:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) 7:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌𝑦 = 𝑦   ) 8:7: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) 9:6,8: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) 10:5,9: ⊢ (   𝐴 ∈ 𝑉   ▶   (([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))   ) 11:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶))   ) 12:10,11: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))   ) 13:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑧 = ⟨𝑤   ,    𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩)   ) 14:12,13: ⊢ (   𝐴 ∈ 𝑉   ▶   (([𝐴 / 𝑥]𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 15:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))   ) 16:14,15: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 17:16: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑦([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 18:17: ⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 19:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))   ) 20:18,19: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 21:20: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑤([𝐴 / 𝑥]∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 22:21: ⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑤[𝐴 / 𝑥]∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 23:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑤∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]∃𝑦 (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))   ) 24:22,23: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑤∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 25:24: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑧([𝐴 / 𝑥]∃𝑤∃ 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 26:25: ⊢ (   𝐴 ∈ 𝑉   ▶   {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃ 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}    ) 27:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃ 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ [𝐴 / 𝑥] ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}   ) 28:26,27: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃ 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}    ) 29:: ⊢ {⟨𝑤   ,   𝑦⟩ ∣ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} 30:: ⊢ (𝐵 × 𝐶) = {⟨𝑤   ,   𝑦⟩ ∣ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} 31:29,30: ⊢ (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤 , 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} 32:31: ⊢ ∀𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} 33:1,32: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}   ) 34:28,33: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}   ) 35:: ⊢ {⟨𝑤   ,   𝑦⟩ ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} 36:: ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = { ⟨𝑤, 𝑦⟩ ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)} 37:35,36: ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} 38:34,37: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶)   ) qed:38: ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = ( ⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))

TheoremcsbresgVD 38044 Virtual deduction proof of csbresgOLD 37968. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbresgOLD 37968 is csbresgVD 38044 without virtual deductions and was automatically derived from csbresgVD 38044.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌V = V   ) 3:2: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V)   ) 4:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V)   ) 5:3,4: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V)   ) 6:5: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))   ) 7:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V))   ) 8:6,7: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))   ) 9:: ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) 10:9: ⊢ ∀𝑥(𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) 11:1,10: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V))   ) 12:8,11: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ( ⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))   ) 13:: ⊢ (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = ( ⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) 14:12,13: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ( ⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶)   ) qed:14: ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ( ⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

TheoremcsbrngVD 38045 Virtual deduction proof of csbrngOLD 37969. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbrngOLD 37969 is csbrngVD 38045 without virtual deductions and was automatically derived from csbrngVD 38045.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]⟨𝑤   ,   𝑦⟩ ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 3:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌⟨𝑤   ,   𝑦⟩ = ⟨𝑤, 𝑦⟩   ) 4:3: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌⟨𝑤   ,   𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 5:2,4: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]⟨𝑤   ,   𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 6:5: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑤([𝐴 / 𝑥]⟨𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 7:6: ⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑤[𝐴 / 𝑥]⟨𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 8:1: ⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑤[𝐴 / 𝑥]⟨𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤⟨𝑤, 𝑦⟩ ∈ 𝐵)   ) 9:7,8: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑤⟨𝑤    ,   𝑦⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 10:9: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑦([𝐴 / 𝑥]∃𝑤 ⟨𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 11:10: ⊢ (   𝐴 ∈ 𝑉   ▶   {𝑦 ∣ [𝐴 / 𝑥]∃𝑤⟨ 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵}   ) 12:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤 ⟨𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤⟨𝑤, 𝑦⟩ ∈ 𝐵}   ) 13:11,12: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤 ⟨𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵}   ) 14:: ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑤⟨𝑤   ,   𝑦⟩ ∈ 𝐵} 15:14: ⊢ ∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤⟨𝑤   ,   𝑦⟩ ∈ 𝐵} 16:1,15: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤⟨𝑤, 𝑦⟩ ∈ 𝐵}   ) 17:13,16: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌ran 𝐵 = {𝑦 ∣ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵}   ) 18:: ⊢ ran ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤⟨𝑤    ,   𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵} 19:17,18: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋ 𝐴 / 𝑥⦌𝐵   ) qed:19: ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)

Theoremcsbima12gALTVD 38046 Virtual deduction proof of csbima12gALTOLD 37970. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbima12gALTOLD 37970 is csbima12gALTVD 38046 without virtual deductions and was automatically derived from csbima12gALTVD 38046.
 1:: ⊢ (   𝐴 ∈ 𝐶   ▶   𝐴 ∈ 𝐶   ) 2:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ( ⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) 3:2: ⊢ (   𝐴 ∈ 𝐶   ▶    ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) 4:1: ⊢ (   𝐴 ∈ 𝐶   ▶    ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵)   ) 5:3,4: ⊢ (   𝐴 ∈ 𝐶   ▶    ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) 6:: ⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) 7:6: ⊢ ∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) 8:1,7: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋ 𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)   ) 9:5,8: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) 10:: ⊢ (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) 11:9,10: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ( ⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)   ) qed:11: ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋ 𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

TheoremcsbunigVD 38047 Virtual deduction proof of csbunigOLD 37964. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbunigOLD 37964 is csbunigVD 38047 without virtual deductions and was automatically derived from csbunigVD 38047.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)   ) 3:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 4:2,3: ⊢ (   𝐴 ∈ 𝑉   ▶   (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 5:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵))   ) 6:4,5: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 7:6: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑦([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 8:7: ⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 9:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))   ) 10:8,9: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 11:10: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑧([𝐴 / 𝑥]∃𝑦( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 12:11: ⊢ (   𝐴 ∈ 𝑉   ▶   {𝑧 ∣ [𝐴 / 𝑥]∃𝑦( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}   ) 13:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}    ) 14:12,13: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}   ) 15:: ⊢ ∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} 16:15: ⊢ ∀𝑥∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} 17:1,16: ⊢ (   𝐴 ∈ 𝑉   ▶   [𝐴 / 𝑥]∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}   ) 18:1,17: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌∪ 𝐵 = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}   ) 19:14,18: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}   ) 20:: ⊢ ∪ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} 21:19,20: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵   ) qed:21: ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)

Theoremcsbfv12gALTVD 38048 Virtual deduction proof of csbfv12gALTOLD 37965. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12gALTOLD 37965 is csbfv12gALTVD 38048 without virtual deductions and was automatically derived from csbfv12gALTVD 38048.
 1:: ⊢ (   𝐴 ∈ 𝐶   ▶   𝐴 ∈ 𝐶   ) 2:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌{𝑦} = { 𝑦}   ) 3:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵 }) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌{𝐵})   ) 4:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌{𝐵} = { ⦋𝐴 / 𝑥⦌𝐵}   ) 5:4: ⊢ (   𝐴 ∈ 𝐶   ▶   (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌{𝐵}) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵})   ) 6:3,5: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵 }) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵})   ) 7:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦})   ) 8:6,2: ⊢ (   𝐴 ∈ 𝐶   ▶   (⦋𝐴 / 𝑥⦌(𝐹 “ { 𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦})   ) 9:7,8: ⊢ (   𝐴 ∈ 𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦})    ) 10:9: ⊢ (   𝐴 ∈ 𝐶   ▶   ∀𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦})   ) 11:10: ⊢ (   𝐴 ∈ 𝐶   ▶   {𝑦 ∣ [𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}   ) 12:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ [𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}   ) 13:11,12: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦 }}   ) 14:13: ⊢ (   𝐴 ∈ 𝐶   ▶   ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}   ) 15:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   ) 16:14,15: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}   ) 17:: ⊢ (𝐹‘𝐵) = ∪ {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} 18:17: ⊢ ∀𝑥(𝐹‘𝐵) = ∪ {𝑦 ∣ (𝐹 “ {𝐵 }) = {𝑦}} 19:1,18: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   ) 20:16,19: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}   ) 21:: ⊢ (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}} 22:20,21: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)   ) qed:22: ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

Theoremcon5VD 38049 Virtual deduction proof of con5 37640. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con5 37640 is con5VD 38049 without virtual deductions and was automatically derived from con5VD 38049.
 1:: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (𝜑 ↔ ¬ 𝜓)   ) 2:1: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (¬ 𝜓 → 𝜑)   ) 3:2: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (¬ 𝜑 → ¬ ¬ 𝜓 )   ) 4:: ⊢ (𝜓 ↔ ¬ ¬ 𝜓) 5:3,4: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (¬ 𝜑 → 𝜓)   ) qed:5: ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))

TheoremrelopabVD 38050 Virtual deduction proof of relopab 5061. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5061 is relopabVD 38050 without virtual deductions and was automatically derived from relopabVD 38050.
 1:: ⊢ (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   ) 2:1: ⊢ (   𝑦 = 𝑣   ▶   ⟨𝑥   ,   𝑦⟩ = ⟨𝑥   ,   𝑣 ⟩   ) 3:: ⊢ (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   ) 4:3: ⊢ (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   ⟨𝑥   ,   𝑣⟩ = ⟨ 𝑢, 𝑣⟩   ) 5:2,4: ⊢ (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   ⟨𝑥   ,   𝑦⟩ = ⟨ 𝑢, 𝑣⟩   ) 6:5: ⊢ (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   ) 7:6: ⊢ (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,    𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   ) 8:7: ⊢ (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))) 9:8: ⊢ (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))) 90:: ⊢ (𝑣 = 𝑦 ↔ 𝑦 = 𝑣) 91:90: ⊢ (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣) 92:: ⊢ ∃𝑣𝑣 = 𝑦 10:91,92: ⊢ ∃𝑣𝑦 = 𝑣 11:9,10: ⊢ ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)) 12:11: ⊢ (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)) 13:: ⊢ (∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢 , 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩)) 14:12,13: ⊢ (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩)) 15:14: ⊢ (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦 ⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩)) 150:: ⊢ (𝑢 = 𝑥 ↔ 𝑥 = 𝑢) 151:150: ⊢ (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢) 152:: ⊢ ∃𝑢𝑢 = 𝑥 16:151,152: ⊢ ∃𝑢𝑥 = 𝑢 17:15,16: ⊢ ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩) 18:17: ⊢ (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩) 19:18: ⊢ (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑦∃𝑢 ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 20:: ⊢ (∃𝑦∃𝑢∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 21:19,20: ⊢ (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 22:21: ⊢ (∃𝑥∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑥 ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 23:: ⊢ (∃𝑥∃𝑢∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 24:22,23: ⊢ (∃𝑥∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢 ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 25:24: ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩} 26:: ⊢ 𝑥 ∈ V 27:: ⊢ 𝑦 ∈ V 28:26,27: ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) 29:28: ⊢ (𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ (𝑧 = ⟨𝑥   ,   𝑦 ⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) 30:29: ⊢ (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) 31:30: ⊢ (∃𝑥∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑥 ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) 32:31: ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} = { 𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} 320:25,32: ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩} 33:: ⊢ 𝑢 ∈ V 34:: ⊢ 𝑣 ∈ V 35:33,34: ⊢ (𝑢 ∈ V ∧ 𝑣 ∈ V) 36:35: ⊢ (𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ (𝑧 = ⟨𝑢   ,   𝑣 ⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))) 37:36: ⊢ (∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))) 38:37: ⊢ (∃𝑢∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑢 ∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))) 39:38: ⊢ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩} = { 𝑧 ∣ ∃𝑢∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))} 40:320,39: ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))} 41:: ⊢ {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) } 42:: ⊢ {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) } 43:40,41,42: ⊢ {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} 44:: ⊢ {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = (V × V) 45:43,44: ⊢ {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ (V × V) 46:28: ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) 47:46: ⊢ {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} 48:45,47: ⊢ {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ (V × V) qed:48: ⊢ Rel {⟨𝑥   ,   𝑦⟩ ∣ 𝜑}
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Theorem19.41rgVD 38051 Virtual deduction proof of 19.41rg 37678. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 37678 is 19.41rgVD 38051 without virtual deductions and was automatically derived from 19.41rgVD 38051. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) 2:1: ⊢ ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → ( 𝜑 ∧ 𝜓)))) 3:2: ⊢ ∀𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑 ∧ 𝜓)))) 4:3: ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑 ∧ 𝜓)))) 5:: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   ∀𝑥(𝜓 → ∀𝑥𝜓)   ) 6:4,5: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑 ∧ 𝜓)))   ) 7:: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ,   ∀𝑥𝜓   ▶    ∀𝑥𝜓   ) 8:6,7: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ,   ∀𝑥𝜓   ▶    ∀𝑥(𝜑 → (𝜑 ∧ 𝜓))   ) 9:8: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ,   ∀𝑥𝜓   ▶    (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))   ) 10:9: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)))   ) 11:5: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀ 𝑥𝜓)   ) 12:10,11: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ( ∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)))   ) 13:12: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑 ∧ 𝜓)))   ) 14:13: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥 𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))   ) qed:14: ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)))
(∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))

Theorem2pm13.193VD 38052 Virtual deduction proof of 2pm13.193 37680. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 2pm13.193 37680 is 2pm13.193VD 38052 without virtual deductions and was automatically derived from 2pm13.193VD 38052. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ) 2:1: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) 3:2: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑥 = 𝑢   ) 4:1: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   ) 5:3,4: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢)   ) 6:5: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢)   ) 7:6: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑣 / 𝑦]𝜑   ) 8:2: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑦 = 𝑣   ) 9:7,8: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣)   ) 10:9: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝜑 ∧ 𝑦 = 𝑣)   ) 11:10: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝜑   ) 12:2,11: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ) 13:12: ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) 14:: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ) 15:14: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) 16:15: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑦 = 𝑣   ) 17:14: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   𝜑    ) 18:16,17: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   ( 𝜑 ∧ 𝑦 = 𝑣)   ) 19:18: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣)   ) 20:15: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑥 = 𝑢   ) 21:19: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑣 / 𝑦]𝜑   ) 22:20,21: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢)   ) 23:22: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢)   ) 24:23: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   ) 25:15,24: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ) 26:25: ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) qed:13,26: ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
(((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))

TheoremhbimpgVD 38053 Virtual deduction proof of hbimpg 37682. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 37682 is hbimpgVD 38053 without virtual deductions and was automatically derived from hbimpgVD 38053. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ) 2:1: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ∀𝑥(𝜑 → ∀𝑥𝜑)   ) 3:: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   ¬ 𝜑   ) 4:2: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 5:4: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 6:3,5: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   ∀𝑥¬ 𝜑   ) 7:: ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) 8:7: ⊢ (∀𝑥¬ 𝜑 → ∀𝑥(𝜑 → 𝜓)) 9:6,8: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   ∀𝑥(𝜑 → 𝜓)   ) 10:9: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (¬ 𝜑 → ∀𝑥(𝜑 → 𝜓))   ) 11:: ⊢ (𝜓 → (𝜑 → 𝜓)) 12:11: ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 → 𝜓)) 13:1: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ∀𝑥(𝜓 → ∀𝑥𝜓)   ) 14:13: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥𝜓)   ) 15:14,12: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥(𝜑 → 𝜓))   ) 16:10,15: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((¬ 𝜑 ∨ 𝜓) → ∀𝑥(𝜑 → 𝜓))   ) 17:: ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) 18:16,17: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))   ) 19:: ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑥( 𝜑 → ∀𝑥𝜑)) 20:: ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ∀𝑥∀𝑥( 𝜓 → ∀𝑥𝜓)) 21:19,20: ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥(∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))) 22:21,18: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))   ) qed:22: ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)))
((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))

TheoremhbalgVD 38054 Virtual deduction proof of hbalg 37683. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 37683 is hbalgVD 38054 without virtual deductions and was automatically derived from hbalgVD 38054. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   ∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦(𝜑 → ∀𝑥𝜑)   ) 2:1: ⊢ (   ∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)   ) 3:: ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) 4:2,3: ⊢ (   ∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)   ) 5:: ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑦( 𝜑 → ∀𝑥𝜑)) 6:5,4: ⊢ (   ∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦(∀ 𝑦𝜑 → ∀𝑥∀𝑦𝜑)   ) qed:6: ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦 𝜑 → ∀𝑥∀𝑦𝜑))
(∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))

TheoremhbexgVD 38055 Virtual deduction proof of hbexg 37684. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 37684 is hbexgVD 38055 without virtual deductions and was automatically derived from hbexgVD 38055. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 ∀𝑦(𝜑 → ∀𝑥𝜑)   ) 2:1: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦 ∀𝑥(𝜑 → ∀𝑥𝜑)   ) 3:2: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 (𝜑 → ∀𝑥𝜑)   ) 4:3: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 (¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 5:: ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦 ∀𝑥(𝜑 → ∀𝑥𝜑)) 6:: ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦 ∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) 7:5: ⊢ (∀𝑦∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) 8:5,6,7: ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦 ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) 9:8,4: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦 ∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 10:9: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 ∀𝑦(¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 11:10: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦 (¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 12:11: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦 (∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑)   ) 13:12: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀ 𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑)   ) 14:: ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥 ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) 15:13,14: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 (∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑)   ) 16:15: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 (¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   ) 17:16: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   ) 18:: ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑) 19:17,18: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   ) 20:18: ⊢ (∀𝑥∃𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑) 21:19,20: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥∃𝑦𝜑)   ) 22:8,21: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦 (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)   ) 23:14,22: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 ∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)   ) qed:23: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 ∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)   )
(∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))

Theoremax6e2eqVD 38056* The following User's Proof is a Virtual Deduction proof (see wvd1 37697) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 37685 is ax6e2eqVD 38056 without virtual deductions and was automatically derived from ax6e2eqVD 38056. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∀𝑥𝑥 = 𝑦   ) 2:: ⊢ (   ∀𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   ) 3:1: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   𝑥 = 𝑦   ) 4:2,3: ⊢ (   ∀𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑦 = 𝑢   ) 5:2,4: ⊢ (   ∀𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 6:5: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))   ) 7:6: ⊢ (∀𝑥𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) 8:7: ⊢ (∀𝑥∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) 9:: ⊢ (∀𝑥𝑥 = 𝑦 ↔ ∀𝑥∀𝑥𝑥 = 𝑦) 10:8,9: ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) 11:1,10: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))   ) 12:11: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   (∃𝑥𝑥 = 𝑢 → ∃𝑥 (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))   ) 13:: ⊢ ∃𝑥𝑥 = 𝑢 14:13,12: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢 )   ) 140:14: ⊢ (∀𝑥𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ) 141:140: ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) 15:1,141: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 16:1,15: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∀𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 17:16: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 18:17: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 19:: ⊢ (   𝑢 = 𝑣   ▶   𝑢 = 𝑣   ) 20:: ⊢ (   𝑢 = 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ▶   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 21:20: ⊢ (   𝑢 = 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ▶   𝑦 = 𝑢    ) 22:19,21: ⊢ (   𝑢 = 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ▶   𝑦 = 𝑣    ) 23:20: ⊢ (   𝑢 = 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ▶   𝑥 = 𝑢    ) 24:22,23: ⊢ (   𝑢 = 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ▶   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) 25:24: ⊢ (   𝑢 = 𝑣   ▶   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 26:25: ⊢ (   𝑢 = 𝑣   ▶   ∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 27:26: ⊢ (   𝑢 = 𝑣   ▶   (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 28:27: ⊢ (   𝑢 = 𝑣   ▶   ∀𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 29:28: ⊢ (   𝑢 = 𝑣   ▶   (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 30:29: ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 31:18,30: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   (𝑢 = 𝑣 → ∃𝑥∃𝑦 (𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) qed:31: ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))

Theoremax6e2ndVD 38057* The following User's Proof is a Virtual Deduction proof (see wvd1 37697) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2nd 37686 is ax6e2ndVD 38057 without virtual deductions and was automatically derived from ax6e2ndVD 38057. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ ∃𝑦𝑦 = 𝑣 2:: ⊢ 𝑢 ∈ V 3:1,2: ⊢ (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣) 4:3: ⊢ ∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) 5:: ⊢ (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢) 6:5: ⊢ ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) 7:6: ⊢ (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦 (∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) 8:4,7: ⊢ ∃𝑦(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) 9:: ⊢ (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣) 10:: ⊢ (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣) 11:: ⊢ (   𝑧 = 𝑦   ▶   𝑧 = 𝑦   ) 12:11: ⊢ (   𝑧 = 𝑦   ▶   (𝑧 = 𝑣 ↔ 𝑦 = 𝑣)   ) 120:11: ⊢ (𝑧 = 𝑦 → (𝑧 = 𝑣 ↔ 𝑦 = 𝑣)) 13:9,10,120: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)) 14:: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   ) 15:14,13: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣)   ) 16:15: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)) 17:16: ⊢ (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)) 18:: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 ) 19:17,18: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀ 𝑥𝑦 = 𝑣)) 20:14,19: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∀𝑥(𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)   ) 21:20: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 22:21: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 23:22: ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 24:: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 ) 25:23,24: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 26:14,25: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∀𝑦((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 27:26: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (∃𝑦(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 28:8,27: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) 29:28: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) qed:29: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))

Theoremax6e2ndeqVD 38058* The following User's Proof is a Virtual Deduction proof (see wvd1 37697) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 37685 is ax6e2ndeqVD 38058 without virtual deductions and was automatically derived from ax6e2ndeqVD 38058. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   𝑢 ≠ 𝑣   ▶   𝑢 ≠ 𝑣   ) 2:: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶   ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) 3:2: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶   𝑥 = 𝑢   ) 4:1,3: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶   𝑥 ≠ 𝑣   ) 5:2: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶   𝑦 = 𝑣   ) 6:4,5: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶   𝑥 ≠ 𝑦   ) 7:: ⊢ (∀𝑥𝑥 = 𝑦 → 𝑥 = 𝑦) 8:7: ⊢ (¬ 𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦) 9:: ⊢ (¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦) 10:8,9: ⊢ (𝑥 ≠ 𝑦 → ¬ ∀𝑥𝑥 = 𝑦) 11:6,10: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶    ¬ ∀𝑥𝑥 = 𝑦   ) 12:11: ⊢ (   𝑢 ≠ 𝑣   ▶   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   ) 13:12: ⊢ (   𝑢 ≠ 𝑣   ▶   ∀𝑥((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   ) 14:13: ⊢ (   𝑢 ≠ 𝑣   ▶   (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥¬ ∀𝑥𝑥 = 𝑦)   ) 15:: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 ) 19:15: ⊢ (∃𝑥¬ ∀𝑥𝑥 = 𝑦 ↔ ¬ ∀𝑥𝑥 = 𝑦) 20:14,19: ⊢ (   𝑢 ≠ 𝑣   ▶   (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   ) 21:20: ⊢ (   𝑢 ≠ 𝑣   ▶   ∀𝑦(∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   ) 22:21: ⊢ (   𝑢 ≠ 𝑣   ▶   (∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   ) 23:: ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃ 𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) 24:22,23: ⊢ (   𝑢 ≠ 𝑣   ▶   (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   ) 25:: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 ) 26:25: ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∃𝑦∀𝑦¬ ∀𝑥𝑥 = 𝑦) 260:: ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦∀𝑦¬ ∀𝑥𝑥 = 𝑦) 27:260: ⊢ (∃𝑦∀𝑦¬ ∀𝑥𝑥 = 𝑦 ↔ ∀𝑦¬ ∀𝑥𝑥 = 𝑦) 270:26,27: ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥 𝑥 = 𝑦) 28:: ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦 ) 29:270,28: ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦 ) 30:24,29: ⊢ (   𝑢 ≠ 𝑣   ▶   (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   ) 31:30: ⊢ (   𝑢 ≠ 𝑣   ▶   (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣))   ) 32:31: ⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) 33:: ⊢ (   𝑢 = 𝑣   ▶   𝑢 = 𝑣   ) 34:33: ⊢ (   𝑢 = 𝑣   ▶   (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑢 = 𝑣)   ) 35:34: ⊢ (   𝑢 = 𝑣   ▶   (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣))   ) 36:35: ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) 37:: ⊢ (𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣) 38:32,36,37: ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ( ¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) 39:: ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦 (𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 40:: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) 41:40: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃ 𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 42:: ⊢ (∀𝑥𝑥 = 𝑦 ∨ ¬ ∀𝑥𝑥 = 𝑦) 43:39,41,42: ⊢ (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣 )) 44:40,43: ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ∃𝑥 ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) qed:38,44: ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥 ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))

Theorem2sb5ndVD 38059* The following User's Proof is a Virtual Deduction proof (see wvd1 37697) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2sb5nd 37688 is 2sb5ndVD 38059 without virtual deductions and was automatically derived from 2sb5ndVD 38059. (Contributed by Alan Sare, 30-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) 2:1: ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) 3:: ⊢ ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑) 4:3: ⊢ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑) 5:4: ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥] ∀𝑦[𝑣 / 𝑦]𝜑) 6:: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   ) 7:: ⊢ (∀𝑦𝑦 = 𝑥 → ∀𝑥𝑥 = 𝑦) 8:7: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑦𝑦 = 𝑥) 9:6,8: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑦𝑦 = 𝑥   ) 10:9: ⊢ ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀ 𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) 11:5,10: ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) 12:11: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) 13:: ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) 14:: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∀𝑥𝑥 = 𝑦   ) 15:14: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   (∀𝑥[𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ) 16:13,15: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦 ]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ) 17:16: ⊢ (∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦] 𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) 19:12,17: ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) 20:19: ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) 21:2,20: ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) 22:21: ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) 23:13: ⊢ (∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) 24:22,23: ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) 240:24: ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ( ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) 241:: ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ( ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) 242:241,240: ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) 243:: ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ( [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) ↔ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))) 25:242,243: ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) 26:: ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥 ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) qed:25,26: ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))

Theorem2uasbanhVD 38060* The following User's Proof is a Virtual Deduction proof (see wvd1 37697) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2uasbanh 37689 is 2uasbanhVD 38060 without virtual deductions and was automatically derived from 2uasbanhVD 38060. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 h1:: ⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) 100:1: ⊢ (𝜒 → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) 2:100: ⊢ (   𝜒   ▶   (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))   ) 3:2: ⊢ (   𝜒   ▶   ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ) 4:3: ⊢ (   𝜒   ▶   ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣 )   ) 5:4: ⊢ (   𝜒   ▶   (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)    ) 6:5: ⊢ (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))   ) 7:3,6: ⊢ (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   ) 8:2: ⊢ (   𝜒   ▶   ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)   ) 9:5: ⊢ (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))   ) 10:8,9: ⊢ (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜓   ) 101:: ⊢ ([𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓)) 102:101: ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓)) 103:: ⊢ ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦 ]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓)) 104:102,103: ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓)) 11:7,10,104: ⊢ (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)   ) 110:5: ⊢ (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)))   ) 12:11,110: ⊢ (   𝜒   ▶   ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))   ) 120:12: ⊢ (𝜒 → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ (𝜑 ∧ 𝜓))) 13:1,120: ⊢ ((∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))) 14:: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓 ))   ▶   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧