MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextf Structured version   Visualization version   GIF version

Theorem cnextf 21793
Description: Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
Assertion
Ref Expression
cnextf (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥

Proof of Theorem cnextf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnextf.3 . . . 4 (𝜑𝐽 ∈ Top)
2 cnextf.4 . . . 4 (𝜑𝐾 ∈ Haus)
3 cnextf.5 . . . 4 (𝜑𝐹:𝐴𝐵)
4 cnextf.a . . . 4 (𝜑𝐴𝐶)
5 cnextf.1 . . . . 5 𝐶 = 𝐽
6 cnextf.2 . . . . 5 𝐵 = 𝐾
75, 6cnextfun 21791 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
81, 2, 3, 4, 7syl22anc 1324 . . 3 (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹))
9 simpl 473 . . . . . . 7 ((𝜑𝑥𝐶) → 𝜑)
10 cnextf.6 . . . . . . . . 9 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
1110eleq2d 2684 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
1211biimpar 502 . . . . . . 7 ((𝜑𝑥𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
13 cnextf.7 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
14 n0 3912 . . . . . . . 8 (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
1513, 14sylib 208 . . . . . . 7 ((𝜑𝑥𝐶) → ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
16 haustop 21058 . . . . . . . . . . . . . 14 (𝐾 ∈ Haus → 𝐾 ∈ Top)
172, 16syl 17 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Top)
185, 6cnextfval 21789 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
191, 17, 3, 4, 18syl22anc 1324 . . . . . . . . . . . 12 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2019eleq2d 2684 . . . . . . . . . . 11 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
21 opeliunxp 5136 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2220, 21syl6bb 276 . . . . . . . . . 10 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
2322exbidv 1847 . . . . . . . . 9 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
24 19.42v 1915 . . . . . . . . 9 (∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2523, 24syl6bb 276 . . . . . . . 8 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
2625biimpar 502 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) → ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
279, 12, 15, 26syl12anc 1321 . . . . . 6 ((𝜑𝑥𝐶) → ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
2825simprbda 652 . . . . . . 7 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
2911adantr 481 . . . . . . 7 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
3028, 29mpbid 222 . . . . . 6 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥𝐶)
3127, 30impbida 876 . . . . 5 (𝜑 → (𝑥𝐶 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)))
3231abbi2dv 2739 . . . 4 (𝜑𝐶 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)})
33 dfdm3 5275 . . . 4 dom ((𝐽CnExt𝐾)‘𝐹) = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)}
3432, 33syl6reqr 2674 . . 3 (𝜑 → dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶)
35 df-fn 5855 . . 3 (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ↔ (Fun ((𝐽CnExt𝐾)‘𝐹) ∧ dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶))
368, 34, 35sylanbrc 697 . 2 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶)
3719rneqd 5318 . . 3 (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) = ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
38 rniun 5507 . . . 4 ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
39 vex 3192 . . . . . . . . 9 𝑥 ∈ V
4039snnz 4284 . . . . . . . 8 {𝑥} ≠ ∅
41 rnxp 5528 . . . . . . . 8 ({𝑥} ≠ ∅ → ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
4240, 41ax-mp 5 . . . . . . 7 ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)
4311biimpa 501 . . . . . . . 8 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥𝐶)
446toptopon 20657 . . . . . . . . . . 11 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
4517, 44sylib 208 . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝐵))
4645adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝐾 ∈ (TopOn‘𝐵))
475toptopon 20657 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
481, 47sylib 208 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝐶))
4948adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐽 ∈ (TopOn‘𝐶))
504adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐴𝐶)
51 simpr 477 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑥𝐶)
52 trnei 21619 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
5352biimpa 501 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
5449, 50, 51, 12, 53syl31anc 1326 . . . . . . . . 9 ((𝜑𝑥𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
553adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝐹:𝐴𝐵)
56 flfelbas 21721 . . . . . . . . . . 11 (((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) → 𝑦𝐵)
5756ex 450 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → (𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) → 𝑦𝐵))
5857ssrdv 3593 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
5946, 54, 55, 58syl3anc 1323 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
6043, 59syldan 487 . . . . . . 7 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
6142, 60syl5eqss 3633 . . . . . 6 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6261ralrimiva 2961 . . . . 5 (𝜑 → ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
63 iunss 4532 . . . . 5 ( 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵 ↔ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6462, 63sylibr 224 . . . 4 (𝜑 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6538, 64syl5eqss 3633 . . 3 (𝜑 → ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6637, 65eqsstrd 3623 . 2 (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵)
67 df-f 5856 . 2 (((𝐽CnExt𝐾)‘𝐹):𝐶𝐵 ↔ (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ∧ ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵))
6836, 66, 67sylanbrc 697 1 (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wne 2790  wral 2907  wss 3559  c0 3896  {csn 4153  cop 4159   cuni 4407   ciun 4490   × cxp 5077  dom cdm 5079  ran crn 5080  Fun wfun 5846   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  t crest 16013  Topctop 20630  TopOnctopon 20647  clsccl 20745  neicnei 20824  Hauscha 21035  Filcfil 21572   fLimf cflf 21662  CnExtccnext 21786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-map 7811  df-pm 7812  df-rest 16015  df-fbas 19675  df-fg 19676  df-top 20631  df-topon 20648  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-haus 21042  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-cnext 21787
This theorem is referenced by:  cnextcn  21794  cnextfres1  21795
  Copyright terms: Public domain W3C validator