![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzcmnf | Structured version Visualization version GIF version |
Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
cntzcmnf.b | ⊢ 𝐵 = (Base‘𝐺) |
cntzcmnf.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzcmnf.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
cntzcmnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
cntzcmnf | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | frn 6214 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
4 | cntzcmnf.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
5 | cntzcmnf.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
6 | cntzcmnf.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
7 | 5, 6 | cntzcmn 18445 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ ran 𝐹 ⊆ 𝐵) → (𝑍‘ran 𝐹) = 𝐵) |
8 | 4, 3, 7 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝑍‘ran 𝐹) = 𝐵) |
9 | 3, 8 | sseqtr4d 3783 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ran crn 5267 ⟶wf 6045 ‘cfv 6049 Basecbs 16059 Cntzccntz 17948 CMndccmn 18393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-cntz 17950 df-cmn 18395 |
This theorem is referenced by: gsumres 18514 gsumcl2 18515 gsumf1o 18517 gsumsubmcl 18519 gsumsplit 18528 gsummhm 18538 gsumfsum 20015 wilthlem3 24995 |
Copyright terms: Public domain | W3C validator |