Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv Structured version   Visualization version   GIF version

Theorem csbfv 6190
 Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.) (Revised by NM, 20-Aug-2018.)
Assertion
Ref Expression
csbfv 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem csbfv
StepHypRef Expression
1 csbfv2g 6189 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴 / 𝑥𝑥))
2 csbvarg 3975 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
32fveq2d 6152 . . 3 (𝐴 ∈ V → (𝐹𝐴 / 𝑥𝑥) = (𝐹𝐴))
41, 3eqtrd 2655 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
5 csbprc 3952 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = ∅)
6 fvprc 6142 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
75, 6eqtr4d 2658 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
84, 7pm2.61i 176 1 𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1480   ∈ wcel 1987  Vcvv 3186  ⦋csb 3514  ∅c0 3891  ‘cfv 5847 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-nul 4749  ax-pow 4803 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-dm 5084  df-iota 5810  df-fv 5855 This theorem is referenced by:  mptcoe1fsupp  19504  mptcoe1matfsupp  20526  mp2pm2mplem4  20533  chfacfscmulfsupp  20583  chfacfpmmulfsupp  20587  cpmidpmatlem3  20596  cayhamlem4  20612  cayleyhamilton1  20616  logbmpt  24426  nbgrcl  26120  nbgrnvtx0  26124  iuninc  29221  disjxpin  29243  finixpnum  33023  cdlemkid3N  35698  cdlemkid4  35699  cdlemk39s  35704  mccllem  39230
 Copyright terms: Public domain W3C validator