MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfpmmulfsupp Structured version   Visualization version   GIF version

Theorem chfacfpmmulfsupp 21471
Description: A mapping of values of the "characteristic factor function" multiplied with a constant polynomial matrix is finitely supported. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
cayhamlem1.a 𝐴 = (𝑁 Mat 𝑅)
cayhamlem1.b 𝐵 = (Base‘𝐴)
cayhamlem1.p 𝑃 = (Poly1𝑅)
cayhamlem1.y 𝑌 = (𝑁 Mat 𝑃)
cayhamlem1.r × = (.r𝑌)
cayhamlem1.s = (-g𝑌)
cayhamlem1.0 0 = (0g𝑌)
cayhamlem1.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayhamlem1.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cayhamlem1.e = (.g‘(mulGrp‘𝑌))
Assertion
Ref Expression
chfacfpmmulfsupp (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖))) finSupp 0 )
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠   0 ,𝑛   𝐵,𝑖   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑇,𝑖   × ,𝑖   ,𝑖   𝑖,𝑠   𝑖,𝑏
Allowed substitution hints:   𝐴(𝑖,𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑖,𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑖,𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem chfacfpmmulfsupp
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cayhamlem1.0 . . . 4 0 = (0g𝑌)
21fvexi 6684 . . 3 0 ∈ V
32a1i 11 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ V)
4 ovexd 7191 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 (𝑇𝑀)) × (𝐺𝑖)) ∈ V)
5 nnnn0 11905 . . . . 5 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
65ad2antrl 726 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ0)
7 1nn0 11914 . . . . 5 1 ∈ ℕ0
87a1i 11 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 1 ∈ ℕ0)
96, 8nn0addcld 11960 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ0)
10 vex 3497 . . . . . . 7 𝑘 ∈ V
11 csbov12g 7200 . . . . . . . 8 (𝑘 ∈ V → 𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = (𝑘 / 𝑖(𝑖 (𝑇𝑀)) × 𝑘 / 𝑖(𝐺𝑖)))
12 nfcvd 2978 . . . . . . . . . 10 (𝑘 ∈ V → 𝑖(𝑘 (𝑇𝑀)))
13 oveq1 7163 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖 (𝑇𝑀)) = (𝑘 (𝑇𝑀)))
1412, 13csbiegf 3916 . . . . . . . . 9 (𝑘 ∈ V → 𝑘 / 𝑖(𝑖 (𝑇𝑀)) = (𝑘 (𝑇𝑀)))
15 csbfv 6715 . . . . . . . . . 10 𝑘 / 𝑖(𝐺𝑖) = (𝐺𝑘)
1615a1i 11 . . . . . . . . 9 (𝑘 ∈ V → 𝑘 / 𝑖(𝐺𝑖) = (𝐺𝑘))
1714, 16oveq12d 7174 . . . . . . . 8 (𝑘 ∈ V → (𝑘 / 𝑖(𝑖 (𝑇𝑀)) × 𝑘 / 𝑖(𝐺𝑖)) = ((𝑘 (𝑇𝑀)) × (𝐺𝑘)))
1811, 17eqtrd 2856 . . . . . . 7 (𝑘 ∈ V → 𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = ((𝑘 (𝑇𝑀)) × (𝐺𝑘)))
1910, 18mp1i 13 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = ((𝑘 (𝑇𝑀)) × (𝐺𝑘)))
20 simplll 773 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
21 simpllr 774 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))))
225adantr 483 . . . . . . . . . . . 12 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑠 ∈ ℕ0)
2322ad2antlr 725 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → 𝑠 ∈ ℕ0)
2423nn0zd 12086 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → 𝑠 ∈ ℤ)
2524adantr 483 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑠 ∈ ℤ)
26 2z 12015 . . . . . . . . . 10 2 ∈ ℤ
2726a1i 11 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 2 ∈ ℤ)
2825, 27zaddcld 12092 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑠 + 2) ∈ ℤ)
29 simplr 767 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 ∈ ℕ0)
3029nn0zd 12086 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 ∈ ℤ)
31 peano2nn0 11938 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ0 → (𝑠 + 1) ∈ ℕ0)
325, 31syl 17 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ0)
3332ad2antrl 726 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ0)
3433nn0zd 12086 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℤ)
35 nn0z 12006 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
36 zltp1le 12033 . . . . . . . . . . 11 (((𝑠 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑠 + 1) < 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
3734, 35, 36syl2an 597 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → ((𝑠 + 1) < 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
3837biimpa 479 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → ((𝑠 + 1) + 1) ≤ 𝑘)
39 nncn 11646 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
40 add1p1 11889 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → ((𝑠 + 1) + 1) = (𝑠 + 2))
4139, 40syl 17 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ → ((𝑠 + 1) + 1) = (𝑠 + 2))
4241breq1d 5076 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → (((𝑠 + 1) + 1) ≤ 𝑘 ↔ (𝑠 + 2) ≤ 𝑘))
4342bicomd 225 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
4443adantr 483 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
4544ad2antlr 725 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
4645adantr 483 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
4738, 46mpbird 259 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑠 + 2) ≤ 𝑘)
48 eluz2 12250 . . . . . . . 8 (𝑘 ∈ (ℤ‘(𝑠 + 2)) ↔ ((𝑠 + 2) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝑘))
4928, 30, 47, 48syl3anbrc 1339 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 ∈ (ℤ‘(𝑠 + 2)))
50 cayhamlem1.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
51 cayhamlem1.b . . . . . . . 8 𝐵 = (Base‘𝐴)
52 cayhamlem1.p . . . . . . . 8 𝑃 = (Poly1𝑅)
53 cayhamlem1.y . . . . . . . 8 𝑌 = (𝑁 Mat 𝑃)
54 cayhamlem1.r . . . . . . . 8 × = (.r𝑌)
55 cayhamlem1.s . . . . . . . 8 = (-g𝑌)
56 cayhamlem1.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
57 cayhamlem1.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
58 cayhamlem1.e . . . . . . . 8 = (.g‘(mulGrp‘𝑌))
5950, 51, 52, 53, 54, 55, 1, 56, 57, 58chfacfpmmul0 21470 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑘 ∈ (ℤ‘(𝑠 + 2))) → ((𝑘 (𝑇𝑀)) × (𝐺𝑘)) = 0 )
6020, 21, 49, 59syl3anc 1367 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → ((𝑘 (𝑇𝑀)) × (𝐺𝑘)) = 0 )
6119, 60eqtrd 2856 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 )
6261ex 415 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → ((𝑠 + 1) < 𝑘𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 ))
6362ralrimiva 3182 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑘 ∈ ℕ0 ((𝑠 + 1) < 𝑘𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 ))
64 breq1 5069 . . . 4 (𝑥 = (𝑠 + 1) → (𝑥 < 𝑘 ↔ (𝑠 + 1) < 𝑘))
6564rspceaimv 3628 . . 3 (((𝑠 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 ((𝑠 + 1) < 𝑘𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 )) → ∃𝑥 ∈ ℕ0𝑘 ∈ ℕ0 (𝑥 < 𝑘𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 ))
669, 63, 65syl2anc 586 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∃𝑥 ∈ ℕ0𝑘 ∈ ℕ0 (𝑥 < 𝑘𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 ))
673, 4, 66mptnn0fsupp 13366 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖))) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  csb 3883  ifcif 4467   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  m cmap 8406  Fincfn 8509   finSupp cfsupp 8833  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cle 10676  cmin 10870  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  ...cfz 12893  Basecbs 16483  .rcmulr 16566  0gc0g 16713  -gcsg 18105  .gcmg 18224  mulGrpcmgp 19239  CRingccrg 19298  Poly1cpl1 20345   Mat cmat 21016   matToPolyMat cmat2pmat 21312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-subrg 19533  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-ascl 20087  df-psr 20136  df-mpl 20138  df-opsr 20140  df-psr1 20348  df-ply1 20350  df-dsmm 20876  df-frlm 20891  df-mamu 20995  df-mat 21017  df-mat2pmat 21315
This theorem is referenced by:  chfacfpmmulgsum  21472
  Copyright terms: Public domain W3C validator