MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov1g Structured version   Visualization version   GIF version

Theorem csbov1g 6675
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
Assertion
Ref Expression
csbov1g (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐶))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem csbov1g
StepHypRef Expression
1 csbov12g 6674 . 2 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
2 csbconstg 3539 . . 3 (𝐴𝑉𝐴 / 𝑥𝐶 = 𝐶)
32oveq2d 6651 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐹𝐶))
41, 3eqtrd 2654 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1481  wcel 1988  csb 3526  (class class class)co 6635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-nul 4780  ax-pow 4834
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-dm 5114  df-iota 5839  df-fv 5884  df-ov 6638
This theorem is referenced by:  modfsummods  14506  fprodmodd  14709  scmatscm  20300  idpm2idmp  20587  monmat2matmon  20610  pm2mp  20611  chfacfscmulfsupp  20645  cayhamlem4  20674  iuninc  29351  ellimcabssub0  39649  fsummmodsndifre  41108  fsummmodsnunz  41109  ply1mulgsumlem4  41942
  Copyright terms: Public domain W3C validator