MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mp Structured version   Visualization version   GIF version

Theorem pm2mp 20549
Description: The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
monmat2matmon.p 𝑃 = (Poly1𝑅)
monmat2matmon.c 𝐶 = (𝑁 Mat 𝑃)
monmat2matmon.b 𝐵 = (Base‘𝐶)
monmat2matmon.m1 = ( ·𝑠𝑄)
monmat2matmon.e1 = (.g‘(mulGrp‘𝑄))
monmat2matmon.x 𝑋 = (var1𝐴)
monmat2matmon.a 𝐴 = (𝑁 Mat 𝑅)
monmat2matmon.k 𝐾 = (Base‘𝐴)
monmat2matmon.q 𝑄 = (Poly1𝐴)
monmat2matmon.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
monmat2matmon.e2 𝐸 = (.g‘(mulGrp‘𝑃))
monmat2matmon.y 𝑌 = (var1𝑅)
monmat2matmon.m2 · = ( ·𝑠𝐶)
monmat2matmon.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
pm2mp (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐸   𝑛,𝐼   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑇,𝑛   𝑛,𝑌   · ,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)   𝑄(𝑛)   (𝑛)   (𝑛)   𝑋(𝑛)

Proof of Theorem pm2mp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monmat2matmon.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2621 . . 3 (0g𝐶) = (0g𝐶)
3 crngring 18479 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
43anim2i 592 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
5 monmat2matmon.p . . . . . 6 𝑃 = (Poly1𝑅)
6 monmat2matmon.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
75, 6pmatring 20417 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
8 ringcmn 18502 . . . . 5 (𝐶 ∈ Ring → 𝐶 ∈ CMnd)
94, 7, 83syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ CMnd)
109adantr 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐶 ∈ CMnd)
11 monmat2matmon.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
1211matring 20168 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
133, 12sylan2 491 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
14 monmat2matmon.q . . . . . 6 𝑄 = (Poly1𝐴)
1514ply1ring 19537 . . . . 5 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
16 ringmnd 18477 . . . . 5 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
1713, 15, 163syl 18 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑄 ∈ Mnd)
1817adantr 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → 𝑄 ∈ Mnd)
19 nn0ex 11242 . . . 4 0 ∈ V
2019a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → ℕ0 ∈ V)
21 monmat2matmon.m1 . . . . . . 7 = ( ·𝑠𝑄)
22 monmat2matmon.e1 . . . . . . 7 = (.g‘(mulGrp‘𝑄))
23 monmat2matmon.x . . . . . . 7 𝑋 = (var1𝐴)
24 eqid 2621 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
25 monmat2matmon.i . . . . . . 7 𝐼 = (𝑁 pMatToMatPoly 𝑅)
265, 6, 1, 21, 22, 23, 11, 14, 24, 25pm2mpghm 20540 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
273, 26sylan2 491 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
2827adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐼 ∈ (𝐶 GrpHom 𝑄))
29 ghmmhm 17591 . . . 4 (𝐼 ∈ (𝐶 GrpHom 𝑄) → 𝐼 ∈ (𝐶 MndHom 𝑄))
3028, 29syl 17 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → 𝐼 ∈ (𝐶 MndHom 𝑄))
314adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3231adantr 481 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
33 elmapi 7823 . . . . . . 7 (𝑀 ∈ (𝐾𝑚0) → 𝑀:ℕ0𝐾)
3433adantr 481 . . . . . 6 ((𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴)) → 𝑀:ℕ0𝐾)
3534adantl 482 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → 𝑀:ℕ0𝐾)
3635ffvelrnda 6315 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ 𝐾)
37 simpr 477 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
38 monmat2matmon.k . . . . 5 𝐾 = (Base‘𝐴)
39 monmat2matmon.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
40 monmat2matmon.m2 . . . . 5 · = ( ·𝑠𝐶)
41 monmat2matmon.e2 . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
42 monmat2matmon.y . . . . 5 𝑌 = (var1𝑅)
4311, 38, 39, 5, 6, 1, 40, 41, 42mat2pmatscmxcl 20464 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑀𝑛) ∈ 𝐾𝑛 ∈ ℕ0)) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ 𝐵)
4432, 36, 37, 43syl12anc 1321 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ 𝐵)
45 fvex 6158 . . . . 5 (0g𝐶) ∈ V
4645a1i 11 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (0g𝐶) ∈ V)
47 ovex 6632 . . . . 5 ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ V
4847a1i 11 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) ∈ V)
49 simpr 477 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) → 𝑀 ∈ (𝐾𝑚0))
50 fvex 6158 . . . . . . 7 (0g𝐴) ∈ V
51 fsuppmapnn0ub 12735 . . . . . . 7 ((𝑀 ∈ (𝐾𝑚0) ∧ (0g𝐴) ∈ V) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴))))
5249, 50, 51sylancl 693 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴))))
53 csbov12g 6642 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (𝑥 / 𝑛(𝑛𝐸𝑌) · 𝑥 / 𝑛(𝑇‘(𝑀𝑛))))
54 csbov1g 6643 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑛𝐸𝑌) = (𝑥 / 𝑛𝑛𝐸𝑌))
55 csbvarg 3975 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 / 𝑛𝑛 = 𝑥)
5655oveq1d 6619 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (𝑥 / 𝑛𝑛𝐸𝑌) = (𝑥𝐸𝑌))
5754, 56eqtrd 2655 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑛𝐸𝑌) = (𝑥𝐸𝑌))
58 csbfv2g 6189 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑇‘(𝑀𝑛)) = (𝑇𝑥 / 𝑛(𝑀𝑛)))
59 csbfv2g 6189 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑀𝑛) = (𝑀𝑥 / 𝑛𝑛))
6055fveq2d 6152 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0 → (𝑀𝑥 / 𝑛𝑛) = (𝑀𝑥))
6159, 60eqtrd 2655 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑀𝑛) = (𝑀𝑥))
6261fveq2d 6152 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (𝑇𝑥 / 𝑛(𝑀𝑛)) = (𝑇‘(𝑀𝑥)))
6358, 62eqtrd 2655 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0𝑥 / 𝑛(𝑇‘(𝑀𝑛)) = (𝑇‘(𝑀𝑥)))
6457, 63oveq12d 6622 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0 → (𝑥 / 𝑛(𝑛𝐸𝑌) · 𝑥 / 𝑛(𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6553, 64eqtrd 2655 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6665adantl 482 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
6766adantr 481 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))))
68 fveq2 6148 . . . . . . . . . . . . 13 ((𝑀𝑥) = (0g𝐴) → (𝑇‘(𝑀𝑥)) = (𝑇‘(0g𝐴)))
6968oveq2d 6620 . . . . . . . . . . . 12 ((𝑀𝑥) = (0g𝐴) → ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))) = ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))))
7039, 11, 38, 5, 6, 1mat2pmatghm 20454 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
713, 70sylan2 491 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
7271ad3antrrr 765 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
73 ghmmhm 17591 . . . . . . . . . . . . . . 15 (𝑇 ∈ (𝐴 GrpHom 𝐶) → 𝑇 ∈ (𝐴 MndHom 𝐶))
74 eqid 2621 . . . . . . . . . . . . . . . 16 (0g𝐴) = (0g𝐴)
7574, 2mhm0 17264 . . . . . . . . . . . . . . 15 (𝑇 ∈ (𝐴 MndHom 𝐶) → (𝑇‘(0g𝐴)) = (0g𝐶))
7672, 73, 753syl 18 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑇‘(0g𝐴)) = (0g𝐶))
7776oveq2d 6620 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))) = ((𝑥𝐸𝑌) · (0g𝐶)))
785ply1ring 19537 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
793, 78syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
806matlmod 20154 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐶 ∈ LMod)
8179, 80sylan2 491 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ LMod)
8281ad3antrrr 765 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝐶 ∈ LMod)
8379adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring)
84 eqid 2621 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘𝑃) = (mulGrp‘𝑃)
8584ringmgp 18474 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
8683, 85syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (mulGrp‘𝑃) ∈ Mnd)
8786ad3antrrr 765 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
88 simpr 477 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
893adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
90 eqid 2621 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
9142, 5, 90vr1cl 19506 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑌 ∈ (Base‘𝑃))
9289, 91syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ (Base‘𝑃))
9392ad3antrrr 765 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑌 ∈ (Base‘𝑃))
9484, 90mgpbas 18416 . . . . . . . . . . . . . . . . 17 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
9594, 41mulgnn0cl 17479 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑥 ∈ ℕ0𝑌 ∈ (Base‘𝑃)) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
9687, 88, 93, 95syl3anc 1323 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
975ply1crng 19487 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
986matsca2 20145 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
9997, 98sylan2 491 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝐶))
10099eqcomd 2627 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝐶) = 𝑃)
101100ad3antrrr 765 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (Scalar‘𝐶) = 𝑃)
102101fveq2d 6152 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (Base‘(Scalar‘𝐶)) = (Base‘𝑃))
10396, 102eleqtrrd 2701 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘(Scalar‘𝐶)))
104 eqid 2621 . . . . . . . . . . . . . . 15 (Scalar‘𝐶) = (Scalar‘𝐶)
105 eqid 2621 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
106104, 40, 105, 2lmodvs0 18818 . . . . . . . . . . . . . 14 ((𝐶 ∈ LMod ∧ (𝑥𝐸𝑌) ∈ (Base‘(Scalar‘𝐶))) → ((𝑥𝐸𝑌) · (0g𝐶)) = (0g𝐶))
10782, 103, 106syl2anc 692 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (0g𝐶)) = (0g𝐶))
10877, 107eqtrd 2655 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥𝐸𝑌) · (𝑇‘(0g𝐴))) = (0g𝐶))
10969, 108sylan9eqr 2677 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → ((𝑥𝐸𝑌) · (𝑇‘(𝑀𝑥))) = (0g𝐶))
11067, 109eqtrd 2655 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑀𝑥) = (0g𝐴)) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))
111110ex 450 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑀𝑥) = (0g𝐴) → 𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶)))
112111imim2d 57 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
113112ralimdva 2956 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) ∧ 𝑦 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
114113reximdva 3011 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑀𝑥) = (0g𝐴)) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
11552, 114syld 47 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀 ∈ (𝐾𝑚0)) → (𝑀 finSupp (0g𝐴) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶))))
116115impr 648 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥𝑥 / 𝑛((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))) = (0g𝐶)))
11746, 48, 116mptnn0fsupp 12737 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) finSupp (0g𝐶))
1181, 2, 10, 18, 20, 30, 44, 117gsummptmhm 18261 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))))
119 simpll 789 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
1205, 6, 1, 21, 22, 23, 11, 38, 14, 25, 41, 42, 40, 39monmat2matmon 20548 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ ((𝑀𝑛) ∈ 𝐾𝑛 ∈ ℕ0)) → (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) = ((𝑀𝑛) (𝑛 𝑋)))
121119, 36, 37, 120syl12anc 1321 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) ∧ 𝑛 ∈ ℕ0) → (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))) = ((𝑀𝑛) (𝑛 𝑋)))
122121mpteq2dva 4704 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛))))) = (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋))))
123122oveq2d 6620 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝑄 Σg (𝑛 ∈ ℕ0 ↦ (𝐼‘((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
124118, 123eqtr3d 2657 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ (𝐾𝑚0) ∧ 𝑀 finSupp (0g𝐴))) → (𝐼‘(𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸𝑌) · (𝑇‘(𝑀𝑛)))))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑀𝑛) (𝑛 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3186  csb 3514   class class class wbr 4613  cmpt 4673  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  Fincfn 7899   finSupp cfsupp 8219   < clt 10018  0cn0 11236  Basecbs 15781  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215   MndHom cmhm 17254  .gcmg 17461   GrpHom cghm 17578  CMndccmn 18114  mulGrpcmgp 18410  Ringcrg 18468  CRingccrg 18469  LModclmod 18784  var1cv1 19465  Poly1cpl1 19466   Mat cmat 20132   matToPolyMat cmat2pmat 20428   pMatToMatPoly cpm2mp 20516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-ot 4157  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-hom 15887  df-cco 15888  df-0g 16023  df-gsum 16024  df-prds 16029  df-pws 16031  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-subrg 18699  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-assa 19231  df-ascl 19233  df-psr 19275  df-mvr 19276  df-mpl 19277  df-opsr 19279  df-psr1 19469  df-vr1 19470  df-ply1 19471  df-coe1 19472  df-dsmm 19995  df-frlm 20010  df-mamu 20109  df-mat 20133  df-mat2pmat 20431  df-decpmat 20487  df-pm2mp 20517
This theorem is referenced by:  cpmidpmat  20597  cpmadumatpoly  20607
  Copyright terms: Public domain W3C validator