MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem3 Structured version   Visualization version   GIF version

Theorem dfac5lem3 9553
Description: Lemma for dfac5 9556. (Contributed by NM, 12-Apr-2004.)
Hypothesis
Ref Expression
dfac5lem.1 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
Assertion
Ref Expression
dfac5lem3 (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤))
Distinct variable groups:   𝑤,𝑢,𝑡,   𝑤,𝐴
Allowed substitution hints:   𝐴(𝑢,𝑡,)

Proof of Theorem dfac5lem3
StepHypRef Expression
1 snex 5334 . . . 4 {𝑤} ∈ V
2 vex 3499 . . . 4 𝑤 ∈ V
31, 2xpex 7478 . . 3 ({𝑤} × 𝑤) ∈ V
4 neeq1 3080 . . . 4 (𝑢 = ({𝑤} × 𝑤) → (𝑢 ≠ ∅ ↔ ({𝑤} × 𝑤) ≠ ∅))
5 eqeq1 2827 . . . . 5 (𝑢 = ({𝑤} × 𝑤) → (𝑢 = ({𝑡} × 𝑡) ↔ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
65rexbidv 3299 . . . 4 (𝑢 = ({𝑤} × 𝑤) → (∃𝑡 𝑢 = ({𝑡} × 𝑡) ↔ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
74, 6anbi12d 632 . . 3 (𝑢 = ({𝑤} × 𝑤) → ((𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡)) ↔ (({𝑤} × 𝑤) ≠ ∅ ∧ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡))))
83, 7elab 3669 . 2 (({𝑤} × 𝑤) ∈ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))} ↔ (({𝑤} × 𝑤) ≠ ∅ ∧ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
9 dfac5lem.1 . . 3 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
109eleq2i 2906 . 2 (({𝑤} × 𝑤) ∈ 𝐴 ↔ ({𝑤} × 𝑤) ∈ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))})
11 xpeq2 5578 . . . . . 6 (𝑤 = ∅ → ({𝑤} × 𝑤) = ({𝑤} × ∅))
12 xp0 6017 . . . . . 6 ({𝑤} × ∅) = ∅
1311, 12syl6eq 2874 . . . . 5 (𝑤 = ∅ → ({𝑤} × 𝑤) = ∅)
14 rneq 5808 . . . . . 6 (({𝑤} × 𝑤) = ∅ → ran ({𝑤} × 𝑤) = ran ∅)
152snnz 4713 . . . . . . 7 {𝑤} ≠ ∅
16 rnxp 6029 . . . . . . 7 ({𝑤} ≠ ∅ → ran ({𝑤} × 𝑤) = 𝑤)
1715, 16ax-mp 5 . . . . . 6 ran ({𝑤} × 𝑤) = 𝑤
18 rn0 5798 . . . . . 6 ran ∅ = ∅
1914, 17, 183eqtr3g 2881 . . . . 5 (({𝑤} × 𝑤) = ∅ → 𝑤 = ∅)
2013, 19impbii 211 . . . 4 (𝑤 = ∅ ↔ ({𝑤} × 𝑤) = ∅)
2120necon3bii 3070 . . 3 (𝑤 ≠ ∅ ↔ ({𝑤} × 𝑤) ≠ ∅)
22 df-rex 3146 . . . 4 (∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡) ↔ ∃𝑡(𝑡 ∧ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
23 rneq 5808 . . . . . . . . 9 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) → ran ({𝑤} × 𝑤) = ran ({𝑡} × 𝑡))
24 vex 3499 . . . . . . . . . . 11 𝑡 ∈ V
2524snnz 4713 . . . . . . . . . 10 {𝑡} ≠ ∅
26 rnxp 6029 . . . . . . . . . 10 ({𝑡} ≠ ∅ → ran ({𝑡} × 𝑡) = 𝑡)
2725, 26ax-mp 5 . . . . . . . . 9 ran ({𝑡} × 𝑡) = 𝑡
2823, 17, 273eqtr3g 2881 . . . . . . . 8 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) → 𝑤 = 𝑡)
29 sneq 4579 . . . . . . . . . 10 (𝑤 = 𝑡 → {𝑤} = {𝑡})
3029xpeq1d 5586 . . . . . . . . 9 (𝑤 = 𝑡 → ({𝑤} × 𝑤) = ({𝑡} × 𝑤))
31 xpeq2 5578 . . . . . . . . 9 (𝑤 = 𝑡 → ({𝑡} × 𝑤) = ({𝑡} × 𝑡))
3230, 31eqtrd 2858 . . . . . . . 8 (𝑤 = 𝑡 → ({𝑤} × 𝑤) = ({𝑡} × 𝑡))
3328, 32impbii 211 . . . . . . 7 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) ↔ 𝑤 = 𝑡)
34 equcom 2025 . . . . . . 7 (𝑤 = 𝑡𝑡 = 𝑤)
3533, 34bitri 277 . . . . . 6 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) ↔ 𝑡 = 𝑤)
3635anbi1ci 627 . . . . 5 ((𝑡 ∧ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)) ↔ (𝑡 = 𝑤𝑡))
3736exbii 1848 . . . 4 (∃𝑡(𝑡 ∧ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)) ↔ ∃𝑡(𝑡 = 𝑤𝑡))
38 elequ1 2121 . . . . 5 (𝑡 = 𝑤 → (𝑡𝑤))
3938equsexvw 2011 . . . 4 (∃𝑡(𝑡 = 𝑤𝑡) ↔ 𝑤)
4022, 37, 393bitrri 300 . . 3 (𝑤 ↔ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡))
4121, 40anbi12i 628 . 2 ((𝑤 ≠ ∅ ∧ 𝑤) ↔ (({𝑤} × 𝑤) ≠ ∅ ∧ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
428, 10, 413bitr4i 305 1 (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  {cab 2801  wne 3018  wrex 3141  c0 4293  {csn 4569   × cxp 5555  ran crn 5558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-xp 5563  df-rel 5564  df-cnv 5565  df-dm 5567  df-rn 5568
This theorem is referenced by:  dfac5lem5  9555
  Copyright terms: Public domain W3C validator