![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia11N | Structured version Visualization version GIF version |
Description: The partial isomorphism A for a lattice 𝐾 is one-to-one in the region under co-atom 𝑊. Part of Lemma M of [Crawley] p. 120 line 28. (Contributed by NM, 25-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dia11.b | ⊢ 𝐵 = (Base‘𝐾) |
dia11.l | ⊢ ≤ = (le‘𝐾) |
dia11.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia11.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dia11N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) = (𝐼‘𝑌) ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3651 | . 2 ⊢ ((𝐼‘𝑋) = (𝐼‘𝑌) ↔ ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ (𝐼‘𝑌) ⊆ (𝐼‘𝑋))) | |
2 | dia11.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | dia11.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
4 | dia11.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dia11.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
6 | 2, 3, 4, 5 | diaord 36653 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
7 | 2, 3, 4, 5 | diaord 36653 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝐼‘𝑌) ⊆ (𝐼‘𝑋) ↔ 𝑌 ≤ 𝑋)) |
8 | 7 | 3com23 1291 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑌) ⊆ (𝐼‘𝑋) ↔ 𝑌 ≤ 𝑋)) |
9 | 6, 8 | anbi12d 747 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ (𝐼‘𝑌) ⊆ (𝐼‘𝑋)) ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) |
10 | simp1l 1105 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ HL) | |
11 | hllat 34968 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ Lat) |
13 | simp2l 1107 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
14 | simp3l 1109 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝐵) | |
15 | 2, 3 | latasymb 17101 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
16 | 12, 13, 14, 15 | syl3anc 1366 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
17 | 9, 16 | bitrd 268 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ (𝐼‘𝑌) ⊆ (𝐼‘𝑋)) ↔ 𝑋 = 𝑌)) |
18 | 1, 17 | syl5bb 272 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) = (𝐼‘𝑌) ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 class class class wbr 4685 ‘cfv 5926 Basecbs 15904 lecple 15995 Latclat 17092 HLchlt 34955 LHypclh 35588 DIsoAcdia 36634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-riotaBAD 34557 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-undef 7444 df-map 7901 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-llines 35102 df-lplanes 35103 df-lvols 35104 df-lines 35105 df-psubsp 35107 df-pmap 35108 df-padd 35400 df-lhyp 35592 df-laut 35593 df-ldil 35708 df-ltrn 35709 df-trl 35764 df-disoa 36635 |
This theorem is referenced by: diaf11N 36655 |
Copyright terms: Public domain | W3C validator |