MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dis2ndc Structured version   Visualization version   GIF version

Theorem dis2ndc 22068
Description: A discrete space is second-countable iff it is countable. (Contributed by Mario Carneiro, 13-Apr-2015.)
Assertion
Ref Expression
dis2ndc (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω)

Proof of Theorem dis2ndc
Dummy variables 𝑤 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctex 8524 . 2 (𝑋 ≼ ω → 𝑋 ∈ V)
2 pwexr 7487 . 2 (𝒫 𝑋 ∈ 2ndω → 𝑋 ∈ V)
3 snex 5332 . . . . . . . 8 {𝑥} ∈ V
432a1i 12 . . . . . . 7 (𝑋 ∈ V → (𝑥𝑋 → {𝑥} ∈ V))
5 vex 3497 . . . . . . . . . 10 𝑥 ∈ V
65sneqr 4771 . . . . . . . . 9 ({𝑥} = {𝑦} → 𝑥 = 𝑦)
7 sneq 4577 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
86, 7impbii 211 . . . . . . . 8 ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
982a1i 12 . . . . . . 7 (𝑋 ∈ V → ((𝑥𝑋𝑦𝑋) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)))
104, 9dom2lem 8549 . . . . . 6 (𝑋 ∈ V → (𝑥𝑋 ↦ {𝑥}):𝑋1-1→V)
11 f1f1orn 6626 . . . . . 6 ((𝑥𝑋 ↦ {𝑥}):𝑋1-1→V → (𝑥𝑋 ↦ {𝑥}):𝑋1-1-onto→ran (𝑥𝑋 ↦ {𝑥}))
1210, 11syl 17 . . . . 5 (𝑋 ∈ V → (𝑥𝑋 ↦ {𝑥}):𝑋1-1-onto→ran (𝑥𝑋 ↦ {𝑥}))
13 f1oeng 8528 . . . . 5 ((𝑋 ∈ V ∧ (𝑥𝑋 ↦ {𝑥}):𝑋1-1-onto→ran (𝑥𝑋 ↦ {𝑥})) → 𝑋 ≈ ran (𝑥𝑋 ↦ {𝑥}))
1412, 13mpdan 685 . . . 4 (𝑋 ∈ V → 𝑋 ≈ ran (𝑥𝑋 ↦ {𝑥}))
15 domen1 8659 . . . 4 (𝑋 ≈ ran (𝑥𝑋 ↦ {𝑥}) → (𝑋 ≼ ω ↔ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
1614, 15syl 17 . . 3 (𝑋 ∈ V → (𝑋 ≼ ω ↔ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
17 distop 21603 . . . . . . 7 (𝑋 ∈ V → 𝒫 𝑋 ∈ Top)
18 simpr 487 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑥𝑋) → 𝑥𝑋)
195snelpw 5338 . . . . . . . . . 10 (𝑥𝑋 ↔ {𝑥} ∈ 𝒫 𝑋)
2018, 19sylib 220 . . . . . . . . 9 ((𝑋 ∈ V ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
2120fmpttd 6879 . . . . . . . 8 (𝑋 ∈ V → (𝑥𝑋 ↦ {𝑥}):𝑋⟶𝒫 𝑋)
2221frnd 6521 . . . . . . 7 (𝑋 ∈ V → ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝒫 𝑋)
23 elpwi 4548 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
2423ad2antrl 726 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑦𝑋)
25 simprr 771 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑧𝑦)
2624, 25sseldd 3968 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑧𝑋)
27 eqidd 2822 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → {𝑧} = {𝑧})
28 sneq 4577 . . . . . . . . . . . 12 (𝑥 = 𝑧 → {𝑥} = {𝑧})
2928rspceeqv 3638 . . . . . . . . . . 11 ((𝑧𝑋 ∧ {𝑧} = {𝑧}) → ∃𝑥𝑋 {𝑧} = {𝑥})
3026, 27, 29syl2anc 586 . . . . . . . . . 10 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → ∃𝑥𝑋 {𝑧} = {𝑥})
31 snex 5332 . . . . . . . . . . 11 {𝑧} ∈ V
32 eqid 2821 . . . . . . . . . . . 12 (𝑥𝑋 ↦ {𝑥}) = (𝑥𝑋 ↦ {𝑥})
3332elrnmpt 5828 . . . . . . . . . . 11 ({𝑧} ∈ V → ({𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}) ↔ ∃𝑥𝑋 {𝑧} = {𝑥}))
3431, 33ax-mp 5 . . . . . . . . . 10 ({𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}) ↔ ∃𝑥𝑋 {𝑧} = {𝑥})
3530, 34sylibr 236 . . . . . . . . 9 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → {𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}))
36 vsnid 4602 . . . . . . . . . 10 𝑧 ∈ {𝑧}
3736a1i 11 . . . . . . . . 9 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → 𝑧 ∈ {𝑧})
3825snssd 4742 . . . . . . . . 9 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → {𝑧} ⊆ 𝑦)
39 eleq2 2901 . . . . . . . . . . 11 (𝑤 = {𝑧} → (𝑧𝑤𝑧 ∈ {𝑧}))
40 sseq1 3992 . . . . . . . . . . 11 (𝑤 = {𝑧} → (𝑤𝑦 ↔ {𝑧} ⊆ 𝑦))
4139, 40anbi12d 632 . . . . . . . . . 10 (𝑤 = {𝑧} → ((𝑧𝑤𝑤𝑦) ↔ (𝑧 ∈ {𝑧} ∧ {𝑧} ⊆ 𝑦)))
4241rspcev 3623 . . . . . . . . 9 (({𝑧} ∈ ran (𝑥𝑋 ↦ {𝑥}) ∧ (𝑧 ∈ {𝑧} ∧ {𝑧} ⊆ 𝑦)) → ∃𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦))
4335, 37, 38, 42syl12anc 834 . . . . . . . 8 ((𝑋 ∈ V ∧ (𝑦 ∈ 𝒫 𝑋𝑧𝑦)) → ∃𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦))
4443ralrimivva 3191 . . . . . . 7 (𝑋 ∈ V → ∀𝑦 ∈ 𝒫 𝑋𝑧𝑦𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦))
45 basgen2 21597 . . . . . . 7 ((𝒫 𝑋 ∈ Top ∧ ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝒫 𝑋 ∧ ∀𝑦 ∈ 𝒫 𝑋𝑧𝑦𝑤 ∈ ran (𝑥𝑋 ↦ {𝑥})(𝑧𝑤𝑤𝑦)) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) = 𝒫 𝑋)
4617, 22, 44, 45syl3anc 1367 . . . . . 6 (𝑋 ∈ V → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) = 𝒫 𝑋)
4746adantr 483 . . . . 5 ((𝑋 ∈ V ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) = 𝒫 𝑋)
4846, 17eqeltrd 2913 . . . . . . 7 (𝑋 ∈ V → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ Top)
49 tgclb 21578 . . . . . . 7 (ran (𝑥𝑋 ↦ {𝑥}) ∈ TopBases ↔ (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ Top)
5048, 49sylibr 236 . . . . . 6 (𝑋 ∈ V → ran (𝑥𝑋 ↦ {𝑥}) ∈ TopBases)
51 2ndci 22056 . . . . . 6 ((ran (𝑥𝑋 ↦ {𝑥}) ∈ TopBases ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ 2ndω)
5250, 51sylan 582 . . . . 5 ((𝑋 ∈ V ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → (topGen‘ran (𝑥𝑋 ↦ {𝑥})) ∈ 2ndω)
5347, 52eqeltrrd 2914 . . . 4 ((𝑋 ∈ V ∧ ran (𝑥𝑋 ↦ {𝑥}) ≼ ω) → 𝒫 𝑋 ∈ 2ndω)
54 is2ndc 22054 . . . . . 6 (𝒫 𝑋 ∈ 2ndω ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋))
55 vex 3497 . . . . . . . . 9 𝑏 ∈ V
56 simpr 487 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → 𝑥𝑋)
5756, 19sylib 220 . . . . . . . . . . . . . 14 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
58 simplrr 776 . . . . . . . . . . . . . 14 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → (topGen‘𝑏) = 𝒫 𝑋)
5957, 58eleqtrrd 2916 . . . . . . . . . . . . 13 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → {𝑥} ∈ (topGen‘𝑏))
60 vsnid 4602 . . . . . . . . . . . . 13 𝑥 ∈ {𝑥}
61 tg2 21573 . . . . . . . . . . . . 13 (({𝑥} ∈ (topGen‘𝑏) ∧ 𝑥 ∈ {𝑥}) → ∃𝑦𝑏 (𝑥𝑦𝑦 ⊆ {𝑥}))
6259, 60, 61sylancl 588 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → ∃𝑦𝑏 (𝑥𝑦𝑦 ⊆ {𝑥}))
63 simprrl 779 . . . . . . . . . . . . . . 15 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → 𝑥𝑦)
6463snssd 4742 . . . . . . . . . . . . . 14 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → {𝑥} ⊆ 𝑦)
65 simprrr 780 . . . . . . . . . . . . . 14 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → 𝑦 ⊆ {𝑥})
6664, 65eqssd 3984 . . . . . . . . . . . . 13 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → {𝑥} = 𝑦)
67 simprl 769 . . . . . . . . . . . . 13 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → 𝑦𝑏)
6866, 67eqeltrd 2913 . . . . . . . . . . . 12 (((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) ∧ (𝑦𝑏 ∧ (𝑥𝑦𝑦 ⊆ {𝑥}))) → {𝑥} ∈ 𝑏)
6962, 68rexlimddv 3291 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) ∧ 𝑥𝑋) → {𝑥} ∈ 𝑏)
7069fmpttd 6879 . . . . . . . . . 10 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → (𝑥𝑋 ↦ {𝑥}):𝑋𝑏)
7170frnd 6521 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝑏)
72 ssdomg 8555 . . . . . . . . 9 (𝑏 ∈ V → (ran (𝑥𝑋 ↦ {𝑥}) ⊆ 𝑏 → ran (𝑥𝑋 ↦ {𝑥}) ≼ 𝑏))
7355, 71, 72mpsyl 68 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → ran (𝑥𝑋 ↦ {𝑥}) ≼ 𝑏)
74 simprl 769 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → 𝑏 ≼ ω)
75 domtr 8562 . . . . . . . 8 ((ran (𝑥𝑋 ↦ {𝑥}) ≼ 𝑏𝑏 ≼ ω) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω)
7673, 74, 75syl2anc 586 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑏 ∈ TopBases) ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋)) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω)
7776rexlimdva2 3287 . . . . . 6 (𝑋 ∈ V → (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝒫 𝑋) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
7854, 77syl5bi 244 . . . . 5 (𝑋 ∈ V → (𝒫 𝑋 ∈ 2ndω → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω))
7978imp 409 . . . 4 ((𝑋 ∈ V ∧ 𝒫 𝑋 ∈ 2ndω) → ran (𝑥𝑋 ↦ {𝑥}) ≼ ω)
8053, 79impbida 799 . . 3 (𝑋 ∈ V → (ran (𝑥𝑋 ↦ {𝑥}) ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω))
8116, 80bitrd 281 . 2 (𝑋 ∈ V → (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω))
821, 2, 81pm5.21nii 382 1 (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  wss 3936  𝒫 cpw 4539  {csn 4567   class class class wbr 5066  cmpt 5146  ran crn 5556  1-1wf1 6352  1-1-ontowf1o 6354  cfv 6355  ωcom 7580  cen 8506  cdom 8507  topGenctg 16711  Topctop 21501  TopBasesctb 21553  2ndωc2ndc 22046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-er 8289  df-en 8510  df-dom 8511  df-topgen 16717  df-top 21502  df-bases 21554  df-2ndc 22048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator