MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elina Structured version   Visualization version   GIF version

Theorem elina 10111
Description: Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
elina (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elina
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3514 . 2 (𝐴 ∈ Inacc → 𝐴 ∈ V)
2 fvex 6685 . . . 4 (cf‘𝐴) ∈ V
3 eleq1 2902 . . . 4 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V))
42, 3mpbii 235 . . 3 ((cf‘𝐴) = 𝐴𝐴 ∈ V)
543ad2ant2 1130 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → 𝐴 ∈ V)
6 neeq1 3080 . . . 4 (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅))
7 fveq2 6672 . . . . 5 (𝑦 = 𝐴 → (cf‘𝑦) = (cf‘𝐴))
8 eqeq12 2837 . . . . 5 (((cf‘𝑦) = (cf‘𝐴) ∧ 𝑦 = 𝐴) → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴))
97, 8mpancom 686 . . . 4 (𝑦 = 𝐴 → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴))
10 breq2 5072 . . . . 5 (𝑦 = 𝐴 → (𝒫 𝑥𝑦 ↔ 𝒫 𝑥𝐴))
1110raleqbi1dv 3405 . . . 4 (𝑦 = 𝐴 → (∀𝑥𝑦 𝒫 𝑥𝑦 ↔ ∀𝑥𝐴 𝒫 𝑥𝐴))
126, 9, 113anbi123d 1432 . . 3 (𝑦 = 𝐴 → ((𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥𝑦 𝒫 𝑥𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴)))
13 df-ina 10109 . . 3 Inacc = {𝑦 ∣ (𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥𝑦 𝒫 𝑥𝑦)}
1412, 13elab2g 3670 . 2 (𝐴 ∈ V → (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴)))
151, 5, 14pm5.21nii 382 1 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 208  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  c0 4293  𝒫 cpw 4541   class class class wbr 5068  cfv 6357  csdm 8510  cfccf 9368  Inacccina 10107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365  df-ina 10109
This theorem is referenced by:  inawina  10114  omina  10115  gchina  10123  inar1  10199  inatsk  10202  tskcard  10205  tskuni  10207  gruina  10242  grur1  10244
  Copyright terms: Public domain W3C validator