MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskuni Structured version   Visualization version   GIF version

Theorem tskuni 9718
Description: The union of an element of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
tskuni ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tskuni
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsksdom 9691 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
2 cardidg 9483 . . . . . . . . . . . . . 14 (𝑇 ∈ Tarski → (card‘𝑇) ≈ 𝑇)
32ensymd 8123 . . . . . . . . . . . . 13 (𝑇 ∈ Tarski → 𝑇 ≈ (card‘𝑇))
43adantr 472 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝑇 ≈ (card‘𝑇))
5 sdomentr 8210 . . . . . . . . . . . 12 ((𝐴𝑇𝑇 ≈ (card‘𝑇)) → 𝐴 ≺ (card‘𝑇))
61, 4, 5syl2anc 696 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴 ≺ (card‘𝑇))
7 eqid 2724 . . . . . . . . . . . . . . 15 (𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴 ↦ (𝑓𝑥))
87rnmpt 5478 . . . . . . . . . . . . . 14 ran (𝑥𝐴 ↦ (𝑓𝑥)) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)}
9 cardon 8883 . . . . . . . . . . . . . . . . 17 (card‘𝑇) ∈ On
10 sdomdom 8100 . . . . . . . . . . . . . . . . 17 (𝐴 ≺ (card‘𝑇) → 𝐴 ≼ (card‘𝑇))
11 ondomen 8973 . . . . . . . . . . . . . . . . 17 (((card‘𝑇) ∈ On ∧ 𝐴 ≼ (card‘𝑇)) → 𝐴 ∈ dom card)
129, 10, 11sylancr 698 . . . . . . . . . . . . . . . 16 (𝐴 ≺ (card‘𝑇) → 𝐴 ∈ dom card)
1312adantl 473 . . . . . . . . . . . . . . 15 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → 𝐴 ∈ dom card)
14 vex 3307 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
1514imaex 7221 . . . . . . . . . . . . . . . . 17 (𝑓𝑥) ∈ V
1615, 7fnmpti 6135 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝑓𝑥)) Fn 𝐴
17 dffn4 6234 . . . . . . . . . . . . . . . 16 ((𝑥𝐴 ↦ (𝑓𝑥)) Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝑓𝑥)):𝐴onto→ran (𝑥𝐴 ↦ (𝑓𝑥)))
1816, 17mpbi 220 . . . . . . . . . . . . . . 15 (𝑥𝐴 ↦ (𝑓𝑥)):𝐴onto→ran (𝑥𝐴 ↦ (𝑓𝑥))
19 fodomnum 8993 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom card → ((𝑥𝐴 ↦ (𝑓𝑥)):𝐴onto→ran (𝑥𝐴 ↦ (𝑓𝑥)) → ran (𝑥𝐴 ↦ (𝑓𝑥)) ≼ 𝐴))
2013, 18, 19mpisyl 21 . . . . . . . . . . . . . 14 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → ran (𝑥𝐴 ↦ (𝑓𝑥)) ≼ 𝐴)
218, 20syl5eqbrr 4796 . . . . . . . . . . . . 13 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≼ 𝐴)
22 domsdomtr 8211 . . . . . . . . . . . . 13 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≼ 𝐴𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
2321, 22sylancom 704 . . . . . . . . . . . 12 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
2423adantll 752 . . . . . . . . . . 11 (((𝑇 ∈ Tarski ∧ 𝐴𝑇) ∧ 𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
256, 24mpdan 705 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
26 ne0i 4029 . . . . . . . . . . . 12 (𝐴𝑇𝑇 ≠ ∅)
27 tskcard 9716 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ∈ Inacc)
2826, 27sylan2 492 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (card‘𝑇) ∈ Inacc)
29 elina 9622 . . . . . . . . . . . 12 ((card‘𝑇) ∈ Inacc ↔ ((card‘𝑇) ≠ ∅ ∧ (cf‘(card‘𝑇)) = (card‘𝑇) ∧ ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇)))
3029simp2bi 1138 . . . . . . . . . . 11 ((card‘𝑇) ∈ Inacc → (cf‘(card‘𝑇)) = (card‘𝑇))
3128, 30syl 17 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (cf‘(card‘𝑇)) = (card‘𝑇))
3225, 31breqtrrd 4788 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)))
33323adant2 1123 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)))
3433adantr 472 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)))
35283adant2 1123 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → (card‘𝑇) ∈ Inacc)
3635adantr 472 . . . . . . . . 9 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (card‘𝑇) ∈ Inacc)
37 inawina 9625 . . . . . . . . 9 ((card‘𝑇) ∈ Inacc → (card‘𝑇) ∈ Inaccw)
38 winalim 9630 . . . . . . . . 9 ((card‘𝑇) ∈ Inaccw → Lim (card‘𝑇))
3936, 37, 383syl 18 . . . . . . . 8 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → Lim (card‘𝑇))
40 vex 3307 . . . . . . . . . . 11 𝑦 ∈ V
41 eqeq1 2728 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑧 = (𝑓𝑥) ↔ 𝑦 = (𝑓𝑥)))
4241rexbidv 3154 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∃𝑥𝐴 𝑧 = (𝑓𝑥) ↔ ∃𝑥𝐴 𝑦 = (𝑓𝑥)))
4340, 42elab 3455 . . . . . . . . . 10 (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ↔ ∃𝑥𝐴 𝑦 = (𝑓𝑥))
44 imassrn 5587 . . . . . . . . . . . . . 14 (𝑓𝑥) ⊆ ran 𝑓
45 f1ofo 6257 . . . . . . . . . . . . . . 15 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑓: 𝐴onto→(card‘𝑇))
46 forn 6231 . . . . . . . . . . . . . . 15 (𝑓: 𝐴onto→(card‘𝑇) → ran 𝑓 = (card‘𝑇))
4745, 46syl 17 . . . . . . . . . . . . . 14 (𝑓: 𝐴1-1-onto→(card‘𝑇) → ran 𝑓 = (card‘𝑇))
4844, 47syl5sseq 3759 . . . . . . . . . . . . 13 (𝑓: 𝐴1-1-onto→(card‘𝑇) → (𝑓𝑥) ⊆ (card‘𝑇))
4948ad2antlr 765 . . . . . . . . . . . 12 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ⊆ (card‘𝑇))
50 f1of1 6249 . . . . . . . . . . . . . . . 16 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑓: 𝐴1-1→(card‘𝑇))
51 elssuni 4575 . . . . . . . . . . . . . . . 16 (𝑥𝐴𝑥 𝐴)
52 vex 3307 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
5352f1imaen 8134 . . . . . . . . . . . . . . . 16 ((𝑓: 𝐴1-1→(card‘𝑇) ∧ 𝑥 𝐴) → (𝑓𝑥) ≈ 𝑥)
5450, 51, 53syl2an 495 . . . . . . . . . . . . . . 15 ((𝑓: 𝐴1-1-onto→(card‘𝑇) ∧ 𝑥𝐴) → (𝑓𝑥) ≈ 𝑥)
5554adantll 752 . . . . . . . . . . . . . 14 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ≈ 𝑥)
56 simpl1 1204 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑇 ∈ Tarski)
57 trss 4869 . . . . . . . . . . . . . . . . . . . 20 (Tr 𝑇 → (𝐴𝑇𝐴𝑇))
5857imp 444 . . . . . . . . . . . . . . . . . . 19 ((Tr 𝑇𝐴𝑇) → 𝐴𝑇)
59583adant1 1122 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → 𝐴𝑇)
6059sselda 3709 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑥𝑇)
61 tsksdom 9691 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇)
6256, 60, 61syl2anc 696 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑥𝑇)
6356, 3syl 17 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑇 ≈ (card‘𝑇))
64 sdomentr 8210 . . . . . . . . . . . . . . . 16 ((𝑥𝑇𝑇 ≈ (card‘𝑇)) → 𝑥 ≺ (card‘𝑇))
6562, 63, 64syl2anc 696 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑥 ≺ (card‘𝑇))
6665adantlr 753 . . . . . . . . . . . . . 14 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → 𝑥 ≺ (card‘𝑇))
67 ensdomtr 8212 . . . . . . . . . . . . . 14 (((𝑓𝑥) ≈ 𝑥𝑥 ≺ (card‘𝑇)) → (𝑓𝑥) ≺ (card‘𝑇))
6855, 66, 67syl2anc 696 . . . . . . . . . . . . 13 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ≺ (card‘𝑇))
6936, 30syl 17 . . . . . . . . . . . . . 14 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (cf‘(card‘𝑇)) = (card‘𝑇))
7069adantr 472 . . . . . . . . . . . . 13 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (cf‘(card‘𝑇)) = (card‘𝑇))
7168, 70breqtrrd 4788 . . . . . . . . . . . 12 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ≺ (cf‘(card‘𝑇)))
72 sseq1 3732 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ↔ (𝑓𝑥) ⊆ (card‘𝑇)))
73 breq1 4763 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑥) → (𝑦 ≺ (cf‘(card‘𝑇)) ↔ (𝑓𝑥) ≺ (cf‘(card‘𝑇))))
7472, 73anbi12d 749 . . . . . . . . . . . . 13 (𝑦 = (𝑓𝑥) → ((𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇))) ↔ ((𝑓𝑥) ⊆ (card‘𝑇) ∧ (𝑓𝑥) ≺ (cf‘(card‘𝑇)))))
7574biimprcd 240 . . . . . . . . . . . 12 (((𝑓𝑥) ⊆ (card‘𝑇) ∧ (𝑓𝑥) ≺ (cf‘(card‘𝑇))) → (𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7649, 71, 75syl2anc 696 . . . . . . . . . . 11 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7776rexlimdva 3133 . . . . . . . . . 10 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (∃𝑥𝐴 𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7843, 77syl5bi 232 . . . . . . . . 9 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7978ralrimiv 3067 . . . . . . . 8 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → ∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇))))
80 fvex 6314 . . . . . . . . 9 (card‘𝑇) ∈ V
8180cfslb2n 9203 . . . . . . . 8 ((Lim (card‘𝑇) ∧ ∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇)))
8239, 79, 81syl2anc 696 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇)))
8334, 82mpd 15 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇))
8415dfiun2 4662 . . . . . . . 8 𝑥𝐴 (𝑓𝑥) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)}
8548ralrimivw 3069 . . . . . . . . . 10 (𝑓: 𝐴1-1-onto→(card‘𝑇) → ∀𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇))
86 iunss 4669 . . . . . . . . . 10 ( 𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇) ↔ ∀𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇))
8785, 86sylibr 224 . . . . . . . . 9 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇))
88 fof 6228 . . . . . . . . . . . 12 (𝑓: 𝐴onto→(card‘𝑇) → 𝑓: 𝐴⟶(card‘𝑇))
89 foelrn 6493 . . . . . . . . . . . . 13 ((𝑓: 𝐴onto→(card‘𝑇) ∧ 𝑦 ∈ (card‘𝑇)) → ∃𝑧 𝐴𝑦 = (𝑓𝑧))
9089ex 449 . . . . . . . . . . . 12 (𝑓: 𝐴onto→(card‘𝑇) → (𝑦 ∈ (card‘𝑇) → ∃𝑧 𝐴𝑦 = (𝑓𝑧)))
91 eluni2 4548 . . . . . . . . . . . . . . 15 (𝑧 𝐴 ↔ ∃𝑥𝐴 𝑧𝑥)
92 nfv 1956 . . . . . . . . . . . . . . . 16 𝑥 𝑓: 𝐴⟶(card‘𝑇)
93 nfiu1 4658 . . . . . . . . . . . . . . . . 17 𝑥 𝑥𝐴 (𝑓𝑥)
9493nfel2 2883 . . . . . . . . . . . . . . . 16 𝑥(𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥)
95 ssiun2 4671 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝑓𝑥) ⊆ 𝑥𝐴 (𝑓𝑥))
96953ad2ant2 1126 . . . . . . . . . . . . . . . . . 18 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → (𝑓𝑥) ⊆ 𝑥𝐴 (𝑓𝑥))
97 ffn 6158 . . . . . . . . . . . . . . . . . . . 20 (𝑓: 𝐴⟶(card‘𝑇) → 𝑓 Fn 𝐴)
98973ad2ant1 1125 . . . . . . . . . . . . . . . . . . 19 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → 𝑓 Fn 𝐴)
99513ad2ant2 1126 . . . . . . . . . . . . . . . . . . 19 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → 𝑥 𝐴)
100 simp3 1130 . . . . . . . . . . . . . . . . . . 19 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → 𝑧𝑥)
101 fnfvima 6611 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn 𝐴𝑥 𝐴𝑧𝑥) → (𝑓𝑧) ∈ (𝑓𝑥))
10298, 99, 100, 101syl3anc 1439 . . . . . . . . . . . . . . . . . 18 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → (𝑓𝑧) ∈ (𝑓𝑥))
10396, 102sseldd 3710 . . . . . . . . . . . . . . . . 17 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥))
1041033exp 1112 . . . . . . . . . . . . . . . 16 (𝑓: 𝐴⟶(card‘𝑇) → (𝑥𝐴 → (𝑧𝑥 → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥))))
10592, 94, 104rexlimd 3128 . . . . . . . . . . . . . . 15 (𝑓: 𝐴⟶(card‘𝑇) → (∃𝑥𝐴 𝑧𝑥 → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥)))
10691, 105syl5bi 232 . . . . . . . . . . . . . 14 (𝑓: 𝐴⟶(card‘𝑇) → (𝑧 𝐴 → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥)))
107 eleq1a 2798 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥) → (𝑦 = (𝑓𝑧) → 𝑦 𝑥𝐴 (𝑓𝑥)))
108106, 107syl6 35 . . . . . . . . . . . . 13 (𝑓: 𝐴⟶(card‘𝑇) → (𝑧 𝐴 → (𝑦 = (𝑓𝑧) → 𝑦 𝑥𝐴 (𝑓𝑥))))
109108rexlimdv 3132 . . . . . . . . . . . 12 (𝑓: 𝐴⟶(card‘𝑇) → (∃𝑧 𝐴𝑦 = (𝑓𝑧) → 𝑦 𝑥𝐴 (𝑓𝑥)))
11088, 90, 109sylsyld 61 . . . . . . . . . . 11 (𝑓: 𝐴onto→(card‘𝑇) → (𝑦 ∈ (card‘𝑇) → 𝑦 𝑥𝐴 (𝑓𝑥)))
11145, 110syl 17 . . . . . . . . . 10 (𝑓: 𝐴1-1-onto→(card‘𝑇) → (𝑦 ∈ (card‘𝑇) → 𝑦 𝑥𝐴 (𝑓𝑥)))
112111ssrdv 3715 . . . . . . . . 9 (𝑓: 𝐴1-1-onto→(card‘𝑇) → (card‘𝑇) ⊆ 𝑥𝐴 (𝑓𝑥))
11387, 112eqssd 3726 . . . . . . . 8 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑥𝐴 (𝑓𝑥) = (card‘𝑇))
11484, 113syl5eqr 2772 . . . . . . 7 (𝑓: 𝐴1-1-onto→(card‘𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} = (card‘𝑇))
115114necon3ai 2921 . . . . . 6 ( {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇) → ¬ 𝑓: 𝐴1-1-onto→(card‘𝑇))
11683, 115syl 17 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → ¬ 𝑓: 𝐴1-1-onto→(card‘𝑇))
117116pm2.01da 457 . . . 4 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ¬ 𝑓: 𝐴1-1-onto→(card‘𝑇))
118117nexdv 1977 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ¬ ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇))
119 entr 8124 . . . . . . 7 (( 𝐴𝑇𝑇 ≈ (card‘𝑇)) → 𝐴 ≈ (card‘𝑇))
1203, 119sylan2 492 . . . . . 6 (( 𝐴𝑇𝑇 ∈ Tarski) → 𝐴 ≈ (card‘𝑇))
121 bren 8081 . . . . . 6 ( 𝐴 ≈ (card‘𝑇) ↔ ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇))
122120, 121sylib 208 . . . . 5 (( 𝐴𝑇𝑇 ∈ Tarski) → ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇))
123122expcom 450 . . . 4 (𝑇 ∈ Tarski → ( 𝐴𝑇 → ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇)))
1241233ad2ant1 1125 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ( 𝐴𝑇 → ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇)))
125118, 124mtod 189 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ¬ 𝐴𝑇)
126 uniss 4566 . . . . . . . . 9 (𝐴𝑇 𝐴 𝑇)
127 df-tr 4861 . . . . . . . . . 10 (Tr 𝑇 𝑇𝑇)
128127biimpi 206 . . . . . . . . 9 (Tr 𝑇 𝑇𝑇)
129126, 128sylan9ss 3722 . . . . . . . 8 ((𝐴𝑇 ∧ Tr 𝑇) → 𝐴𝑇)
130129expcom 450 . . . . . . 7 (Tr 𝑇 → (𝐴𝑇 𝐴𝑇))
13157, 130syld 47 . . . . . 6 (Tr 𝑇 → (𝐴𝑇 𝐴𝑇))
132131imp 444 . . . . 5 ((Tr 𝑇𝐴𝑇) → 𝐴𝑇)
133 tsken 9689 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → ( 𝐴𝑇 𝐴𝑇))
134132, 133sylan2 492 . . . 4 ((𝑇 ∈ Tarski ∧ (Tr 𝑇𝐴𝑇)) → ( 𝐴𝑇 𝐴𝑇))
1351343impb 1107 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ( 𝐴𝑇 𝐴𝑇))
136135ord 391 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → (¬ 𝐴𝑇 𝐴𝑇))
137125, 136mpd 15 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1072   = wceq 1596  wex 1817  wcel 2103  {cab 2710  wne 2896  wral 3014  wrex 3015  wss 3680  c0 4023  𝒫 cpw 4266   cuni 4544   ciun 4628   class class class wbr 4760  cmpt 4837  Tr wtr 4860  dom cdm 5218  ran crn 5219  cima 5221  Oncon0 5836  Lim wlim 5837   Fn wfn 5996  wf 5997  1-1wf1 5998  ontowfo 5999  1-1-ontowf1o 6000  cfv 6001  cen 8069  cdom 8070  csdm 8071  cardccrd 8874  cfccf 8876  Inaccwcwina 9617  Inacccina 9618  Tarskictsk 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-ac2 9398
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-smo 7563  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-oi 8531  df-har 8579  df-r1 8740  df-card 8878  df-aleph 8879  df-cf 8880  df-acn 8881  df-ac 9052  df-wina 9619  df-ina 9620  df-tsk 9684
This theorem is referenced by:  tskwun  9719  tskint  9720  tskun  9721  tskurn  9724  pwinfi3  38287
  Copyright terms: Public domain W3C validator