MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruina Structured version   Visualization version   GIF version

Theorem gruina 9592
Description: If a Grothendieck universe 𝑈 is nonempty, then the height of the ordinals in 𝑈 is a strongly inaccessible cardinal. (Contributed by Mario Carneiro, 17-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
gruina ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)

Proof of Theorem gruina
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3912 . . . 4 (𝑈 ≠ ∅ ↔ ∃𝑥 𝑥𝑈)
2 0ss 3949 . . . . . . . . . 10 ∅ ⊆ 𝑥
3 gruss 9570 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑈)
42, 3mp3an3 1410 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ 𝑈)
5 0elon 5742 . . . . . . . . 9 ∅ ∈ On
6 elin 3779 . . . . . . . . 9 (∅ ∈ (𝑈 ∩ On) ↔ (∅ ∈ 𝑈 ∧ ∅ ∈ On))
74, 5, 6sylanblrc 696 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ (𝑈 ∩ On))
8 gruina.1 . . . . . . . 8 𝐴 = (𝑈 ∩ On)
97, 8syl6eleqr 2709 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ 𝐴)
10 ne0i 3902 . . . . . . 7 (∅ ∈ 𝐴𝐴 ≠ ∅)
119, 10syl 17 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ≠ ∅)
1211expcom 451 . . . . 5 (𝑥𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
1312exlimiv 1855 . . . 4 (∃𝑥 𝑥𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
141, 13sylbi 207 . . 3 (𝑈 ≠ ∅ → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
1514impcom 446 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ≠ ∅)
16 grutr 9567 . . . . . . . 8 (𝑈 ∈ Univ → Tr 𝑈)
17 tron 5710 . . . . . . . 8 Tr On
18 trin 4728 . . . . . . . 8 ((Tr 𝑈 ∧ Tr On) → Tr (𝑈 ∩ On))
1916, 17, 18sylancl 693 . . . . . . 7 (𝑈 ∈ Univ → Tr (𝑈 ∩ On))
20 inss2 3817 . . . . . . . 8 (𝑈 ∩ On) ⊆ On
21 epweon 6937 . . . . . . . 8 E We On
22 wess 5066 . . . . . . . 8 ((𝑈 ∩ On) ⊆ On → ( E We On → E We (𝑈 ∩ On)))
2320, 21, 22mp2 9 . . . . . . 7 E We (𝑈 ∩ On)
24 df-ord 5690 . . . . . . 7 (Ord (𝑈 ∩ On) ↔ (Tr (𝑈 ∩ On) ∧ E We (𝑈 ∩ On)))
2519, 23, 24sylanblrc 696 . . . . . 6 (𝑈 ∈ Univ → Ord (𝑈 ∩ On))
26 inex1g 4766 . . . . . 6 (𝑈 ∈ Univ → (𝑈 ∩ On) ∈ V)
27 elon2 5698 . . . . . 6 ((𝑈 ∩ On) ∈ On ↔ (Ord (𝑈 ∩ On) ∧ (𝑈 ∩ On) ∈ V))
2825, 26, 27sylanbrc 697 . . . . 5 (𝑈 ∈ Univ → (𝑈 ∩ On) ∈ On)
298, 28syl5eqel 2702 . . . 4 (𝑈 ∈ Univ → 𝐴 ∈ On)
3029adantr 481 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On)
31 eloni 5697 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
32 ordirr 5705 . . . . . . 7 (Ord 𝐴 → ¬ 𝐴𝐴)
3331, 32syl 17 . . . . . 6 (𝐴 ∈ On → ¬ 𝐴𝐴)
34 elin 3779 . . . . . . . . 9 (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴𝑈𝐴 ∈ On))
3534biimpri 218 . . . . . . . 8 ((𝐴𝑈𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On))
3635, 8syl6eleqr 2709 . . . . . . 7 ((𝐴𝑈𝐴 ∈ On) → 𝐴𝐴)
3736expcom 451 . . . . . 6 (𝐴 ∈ On → (𝐴𝑈𝐴𝐴))
3833, 37mtod 189 . . . . 5 (𝐴 ∈ On → ¬ 𝐴𝑈)
3930, 38syl 17 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬ 𝐴𝑈)
40 inss1 3816 . . . . . . . . . . . . . . . 16 (𝑈 ∩ On) ⊆ 𝑈
418, 40eqsstri 3619 . . . . . . . . . . . . . . 15 𝐴𝑈
4241sseli 3583 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥𝑈)
43 vpwex 4814 . . . . . . . . . . . . . . . 16 𝒫 𝑥 ∈ V
4443canth2 8065 . . . . . . . . . . . . . . 15 𝒫 𝑥 ≺ 𝒫 𝒫 𝑥
4543pwex 4813 . . . . . . . . . . . . . . . . . 18 𝒫 𝒫 𝑥 ∈ V
4645cardid 9321 . . . . . . . . . . . . . . . . 17 (card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥
4746ensymi 7958 . . . . . . . . . . . . . . . 16 𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫 𝑥)
4829adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ On)
49 grupw 9569 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝑈)
50 grupw 9569 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝑥𝑈) → 𝒫 𝒫 𝑥𝑈)
5149, 50syldan 487 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝒫 𝑥𝑈)
5229adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → 𝐴 ∈ On)
53 endom 7934 . . . . . . . . . . . . . . . . . . . . . 22 ((card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥 → (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)
5446, 53ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥
55 cardon 8722 . . . . . . . . . . . . . . . . . . . . . 22 (card‘𝒫 𝒫 𝑥) ∈ On
56 grudomon 9591 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑈 ∈ Univ ∧ (card‘𝒫 𝒫 𝑥) ∈ On ∧ (𝒫 𝒫 𝑥𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
5755, 56mp3an2 1409 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ Univ ∧ (𝒫 𝒫 𝑥𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
5854, 57mpanr2 719 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
59 elin 3779 . . . . . . . . . . . . . . . . . . . . . 22 ((card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On) ↔ ((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On))
6059biimpri 218 . . . . . . . . . . . . . . . . . . . . 21 (((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) → (card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On))
6160, 8syl6eleqr 2709 . . . . . . . . . . . . . . . . . . . 20 (((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) → (card‘𝒫 𝒫 𝑥) ∈ 𝐴)
6258, 55, 61sylancl 693 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ∈ 𝐴)
63 onelss 5730 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → ((card‘𝒫 𝒫 𝑥) ∈ 𝐴 → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴))
6452, 62, 63sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴)
6551, 64syldan 487 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴)
66 ssdomg 7953 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((card‘𝒫 𝒫 𝑥) ⊆ 𝐴 → (card‘𝒫 𝒫 𝑥) ≼ 𝐴))
6748, 65, 66sylc 65 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ≼ 𝐴)
68 endomtr 7966 . . . . . . . . . . . . . . . 16 ((𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫 𝑥) ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝐴) → 𝒫 𝒫 𝑥𝐴)
6947, 67, 68sylancr 694 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝒫 𝑥𝐴)
70 sdomdomtr 8045 . . . . . . . . . . . . . . 15 ((𝒫 𝑥 ≺ 𝒫 𝒫 𝑥 ∧ 𝒫 𝒫 𝑥𝐴) → 𝒫 𝑥𝐴)
7144, 69, 70sylancr 694 . . . . . . . . . . . . . 14 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝐴)
7242, 71sylan2 491 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝒫 𝑥𝐴)
7372ralrimiva 2961 . . . . . . . . . . . 12 (𝑈 ∈ Univ → ∀𝑥𝐴 𝒫 𝑥𝐴)
74 inawinalem 9463 . . . . . . . . . . . 12 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
7529, 73, 74sylc 65 . . . . . . . . . . 11 (𝑈 ∈ Univ → ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
7675adantr 481 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
77 winainflem 9467 . . . . . . . . . 10 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
7815, 30, 76, 77syl3anc 1323 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ω ⊆ 𝐴)
79 vex 3192 . . . . . . . . . . . . . . 15 𝑥 ∈ V
8079canth2 8065 . . . . . . . . . . . . . 14 𝑥 ≺ 𝒫 𝑥
81 sdomtr 8050 . . . . . . . . . . . . . 14 ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥𝐴) → 𝑥𝐴)
8280, 72, 81sylancr 694 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝑥𝐴)
8382ralrimiva 2961 . . . . . . . . . . . 12 (𝑈 ∈ Univ → ∀𝑥𝐴 𝑥𝐴)
84 iscard 8753 . . . . . . . . . . . 12 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
8529, 83, 84sylanbrc 697 . . . . . . . . . . 11 (𝑈 ∈ Univ → (card‘𝐴) = 𝐴)
86 cardlim 8750 . . . . . . . . . . . 12 (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))
87 sseq2 3611 . . . . . . . . . . . . 13 ((card‘𝐴) = 𝐴 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ 𝐴))
88 limeq 5699 . . . . . . . . . . . . 13 ((card‘𝐴) = 𝐴 → (Lim (card‘𝐴) ↔ Lim 𝐴))
8987, 88bibi12d 335 . . . . . . . . . . . 12 ((card‘𝐴) = 𝐴 → ((ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) ↔ (ω ⊆ 𝐴 ↔ Lim 𝐴)))
9086, 89mpbii 223 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9185, 90syl 17 . . . . . . . . . 10 (𝑈 ∈ Univ → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9291adantr 481 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9378, 92mpbid 222 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Lim 𝐴)
94 cflm 9024 . . . . . . . 8 ((𝐴 ∈ On ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
9530, 93, 94syl2anc 692 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
96 cardon 8722 . . . . . . . . . . . 12 (card‘𝑦) ∈ On
97 eleq1 2686 . . . . . . . . . . . 12 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
9896, 97mpbiri 248 . . . . . . . . . . 11 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
9998adantr 481 . . . . . . . . . 10 ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → 𝑥 ∈ On)
10099exlimiv 1855 . . . . . . . . 9 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → 𝑥 ∈ On)
101100abssi 3661 . . . . . . . 8 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ On
102 fvex 6163 . . . . . . . . . 10 (cf‘𝐴) ∈ V
10395, 102syl6eqelr 2707 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ V)
104 intex 4785 . . . . . . . . 9 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅ ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ V)
105103, 104sylibr 224 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅)
106 onint 6949 . . . . . . . 8 (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
107101, 105, 106sylancr 694 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
10895, 107eqeltrd 2698 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
109 eqeq1 2625 . . . . . . . . 9 (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦)))
110109anbi1d 740 . . . . . . . 8 (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
111110exbidv 1847 . . . . . . 7 (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
112102, 111elab 3337 . . . . . 6 ((cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)))
113108, 112sylib 208 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)))
114 simp2rr 1129 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴 = 𝑦)
115 simp1l 1083 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑈 ∈ Univ)
116 simp2rl 1128 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝐴)
117116, 41syl6ss 3599 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
11841sseli 3583 . . . . . . . . . . 11 ((cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) ∈ 𝑈)
1191183ad2ant3 1082 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ∈ 𝑈)
120 simp2l 1085 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) = (card‘𝑦))
121 vex 3192 . . . . . . . . . . . 12 𝑦 ∈ V
122121cardid 9321 . . . . . . . . . . 11 (card‘𝑦) ≈ 𝑦
123120, 122syl6eqbr 4657 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ≈ 𝑦)
124 gruen 9586 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑦𝑈 ∧ ((cf‘𝐴) ∈ 𝑈 ∧ (cf‘𝐴) ≈ 𝑦)) → 𝑦𝑈)
125115, 117, 119, 123, 124syl112anc 1327 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
126 gruuni 9574 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑦𝑈) → 𝑦𝑈)
127115, 125, 126syl2anc 692 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
128114, 127eqeltrd 2698 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴𝑈)
1291283exp 1261 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈)))
130129exlimdv 1858 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈)))
131113, 130mpd 15 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈))
13239, 131mtod 189 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬ (cf‘𝐴) ∈ 𝐴)
133 cfon 9029 . . . . 5 (cf‘𝐴) ∈ On
134 cfle 9028 . . . . . 6 (cf‘𝐴) ⊆ 𝐴
135 onsseleq 5729 . . . . . 6 (((cf‘𝐴) ∈ On ∧ 𝐴 ∈ On) → ((cf‘𝐴) ⊆ 𝐴 ↔ ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴)))
136134, 135mpbii 223 . . . . 5 (((cf‘𝐴) ∈ On ∧ 𝐴 ∈ On) → ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))
137133, 136mpan 705 . . . 4 (𝐴 ∈ On → ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))
138137ord 392 . . 3 (𝐴 ∈ On → (¬ (cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) = 𝐴))
13930, 132, 138sylc 65 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) = 𝐴)
14073adantr 481 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝐴 𝒫 𝑥𝐴)
141 elina 9461 . 2 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
14215, 139, 140, 141syl3anbrc 1244 1 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wne 2790  wral 2907  wrex 2908  Vcvv 3189  cin 3558  wss 3559  c0 3896  𝒫 cpw 4135   cuni 4407   cint 4445   class class class wbr 4618  Tr wtr 4717   E cep 4988   We wwe 5037  Ord word 5686  Oncon0 5687  Lim wlim 5688  cfv 5852  ωcom 7019  cen 7904  cdom 7905  csdm 7906  cardccrd 8713  cfccf 8715  Inacccina 9457  Univcgru 9564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-ac2 9237
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-1o 7512  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-card 8717  df-cf 8719  df-ac 8891  df-ina 9459  df-gru 9565
This theorem is referenced by:  grur1a  9593  grur1  9594  grutsk  9596
  Copyright terms: Public domain W3C validator