MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruina Structured version   Visualization version   GIF version

Theorem gruina 10240
Description: If a Grothendieck universe 𝑈 is nonempty, then the height of the ordinals in 𝑈 is a strongly inaccessible cardinal. (Contributed by Mario Carneiro, 17-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
gruina ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)

Proof of Theorem gruina
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4310 . . . 4 (𝑈 ≠ ∅ ↔ ∃𝑥 𝑥𝑈)
2 0ss 4350 . . . . . . . . . 10 ∅ ⊆ 𝑥
3 gruss 10218 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ ∅ ⊆ 𝑥) → ∅ ∈ 𝑈)
42, 3mp3an3 1446 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ 𝑈)
5 0elon 6244 . . . . . . . . 9 ∅ ∈ On
6 elin 4169 . . . . . . . . 9 (∅ ∈ (𝑈 ∩ On) ↔ (∅ ∈ 𝑈 ∧ ∅ ∈ On))
74, 5, 6sylanblrc 592 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ (𝑈 ∩ On))
8 gruina.1 . . . . . . . 8 𝐴 = (𝑈 ∩ On)
97, 8eleqtrrdi 2924 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → ∅ ∈ 𝐴)
109ne0d 4301 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ≠ ∅)
1110expcom 416 . . . . 5 (𝑥𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
1211exlimiv 1931 . . . 4 (∃𝑥 𝑥𝑈 → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
131, 12sylbi 219 . . 3 (𝑈 ≠ ∅ → (𝑈 ∈ Univ → 𝐴 ≠ ∅))
1413impcom 410 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ≠ ∅)
15 grutr 10215 . . . . . . . 8 (𝑈 ∈ Univ → Tr 𝑈)
16 tron 6214 . . . . . . . 8 Tr On
17 trin 5182 . . . . . . . 8 ((Tr 𝑈 ∧ Tr On) → Tr (𝑈 ∩ On))
1815, 16, 17sylancl 588 . . . . . . 7 (𝑈 ∈ Univ → Tr (𝑈 ∩ On))
19 inss2 4206 . . . . . . . 8 (𝑈 ∩ On) ⊆ On
20 epweon 7497 . . . . . . . 8 E We On
21 wess 5542 . . . . . . . 8 ((𝑈 ∩ On) ⊆ On → ( E We On → E We (𝑈 ∩ On)))
2219, 20, 21mp2 9 . . . . . . 7 E We (𝑈 ∩ On)
23 df-ord 6194 . . . . . . 7 (Ord (𝑈 ∩ On) ↔ (Tr (𝑈 ∩ On) ∧ E We (𝑈 ∩ On)))
2418, 22, 23sylanblrc 592 . . . . . 6 (𝑈 ∈ Univ → Ord (𝑈 ∩ On))
25 inex1g 5223 . . . . . 6 (𝑈 ∈ Univ → (𝑈 ∩ On) ∈ V)
26 elon2 6202 . . . . . 6 ((𝑈 ∩ On) ∈ On ↔ (Ord (𝑈 ∩ On) ∧ (𝑈 ∩ On) ∈ V))
2724, 25, 26sylanbrc 585 . . . . 5 (𝑈 ∈ Univ → (𝑈 ∩ On) ∈ On)
288, 27eqeltrid 2917 . . . 4 (𝑈 ∈ Univ → 𝐴 ∈ On)
2928adantr 483 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On)
30 eloni 6201 . . . . . . 7 (𝐴 ∈ On → Ord 𝐴)
31 ordirr 6209 . . . . . . 7 (Ord 𝐴 → ¬ 𝐴𝐴)
3230, 31syl 17 . . . . . 6 (𝐴 ∈ On → ¬ 𝐴𝐴)
33 elin 4169 . . . . . . . . 9 (𝐴 ∈ (𝑈 ∩ On) ↔ (𝐴𝑈𝐴 ∈ On))
3433biimpri 230 . . . . . . . 8 ((𝐴𝑈𝐴 ∈ On) → 𝐴 ∈ (𝑈 ∩ On))
3534, 8eleqtrrdi 2924 . . . . . . 7 ((𝐴𝑈𝐴 ∈ On) → 𝐴𝐴)
3635expcom 416 . . . . . 6 (𝐴 ∈ On → (𝐴𝑈𝐴𝐴))
3732, 36mtod 200 . . . . 5 (𝐴 ∈ On → ¬ 𝐴𝑈)
3829, 37syl 17 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬ 𝐴𝑈)
39 inss1 4205 . . . . . . . . . . . . . . . 16 (𝑈 ∩ On) ⊆ 𝑈
408, 39eqsstri 4001 . . . . . . . . . . . . . . 15 𝐴𝑈
4140sseli 3963 . . . . . . . . . . . . . 14 (𝑥𝐴𝑥𝑈)
42 vpwex 5278 . . . . . . . . . . . . . . . 16 𝒫 𝑥 ∈ V
4342canth2 8670 . . . . . . . . . . . . . . 15 𝒫 𝑥 ≺ 𝒫 𝒫 𝑥
4442pwex 5281 . . . . . . . . . . . . . . . . . 18 𝒫 𝒫 𝑥 ∈ V
4544cardid 9969 . . . . . . . . . . . . . . . . 17 (card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥
4645ensymi 8559 . . . . . . . . . . . . . . . 16 𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫 𝑥)
4728adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝐴 ∈ On)
48 grupw 10217 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝑈)
49 grupw 10217 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝑥𝑈) → 𝒫 𝒫 𝑥𝑈)
5048, 49syldan 593 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝒫 𝑥𝑈)
5128adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → 𝐴 ∈ On)
52 endom 8536 . . . . . . . . . . . . . . . . . . . . . 22 ((card‘𝒫 𝒫 𝑥) ≈ 𝒫 𝒫 𝑥 → (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)
5345, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥
54 cardon 9373 . . . . . . . . . . . . . . . . . . . . . 22 (card‘𝒫 𝒫 𝑥) ∈ On
55 grudomon 10239 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑈 ∈ Univ ∧ (card‘𝒫 𝒫 𝑥) ∈ On ∧ (𝒫 𝒫 𝑥𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
5654, 55mp3an2 1445 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ Univ ∧ (𝒫 𝒫 𝑥𝑈 ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝒫 𝒫 𝑥)) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
5753, 56mpanr2 702 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ∈ 𝑈)
58 elin 4169 . . . . . . . . . . . . . . . . . . . . . 22 ((card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On) ↔ ((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On))
5958biimpri 230 . . . . . . . . . . . . . . . . . . . . 21 (((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) → (card‘𝒫 𝒫 𝑥) ∈ (𝑈 ∩ On))
6059, 8eleqtrrdi 2924 . . . . . . . . . . . . . . . . . . . 20 (((card‘𝒫 𝒫 𝑥) ∈ 𝑈 ∧ (card‘𝒫 𝒫 𝑥) ∈ On) → (card‘𝒫 𝒫 𝑥) ∈ 𝐴)
6157, 54, 60sylancl 588 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ∈ 𝐴)
62 onelss 6233 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → ((card‘𝒫 𝒫 𝑥) ∈ 𝐴 → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴))
6351, 61, 62sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴)
6450, 63syldan 593 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ⊆ 𝐴)
65 ssdomg 8555 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((card‘𝒫 𝒫 𝑥) ⊆ 𝐴 → (card‘𝒫 𝒫 𝑥) ≼ 𝐴))
6647, 64, 65sylc 65 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (card‘𝒫 𝒫 𝑥) ≼ 𝐴)
67 endomtr 8567 . . . . . . . . . . . . . . . 16 ((𝒫 𝒫 𝑥 ≈ (card‘𝒫 𝒫 𝑥) ∧ (card‘𝒫 𝒫 𝑥) ≼ 𝐴) → 𝒫 𝒫 𝑥𝐴)
6846, 66, 67sylancr 589 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝒫 𝑥𝐴)
69 sdomdomtr 8650 . . . . . . . . . . . . . . 15 ((𝒫 𝑥 ≺ 𝒫 𝒫 𝑥 ∧ 𝒫 𝒫 𝑥𝐴) → 𝒫 𝑥𝐴)
7043, 68, 69sylancr 589 . . . . . . . . . . . . . 14 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → 𝒫 𝑥𝐴)
7141, 70sylan2 594 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝒫 𝑥𝐴)
7271ralrimiva 3182 . . . . . . . . . . . 12 (𝑈 ∈ Univ → ∀𝑥𝐴 𝒫 𝑥𝐴)
73 inawinalem 10111 . . . . . . . . . . . 12 (𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
7428, 72, 73sylc 65 . . . . . . . . . . 11 (𝑈 ∈ Univ → ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
7574adantr 483 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
76 winainflem 10115 . . . . . . . . . 10 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
7714, 29, 75, 76syl3anc 1367 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ω ⊆ 𝐴)
78 vex 3497 . . . . . . . . . . . . . . 15 𝑥 ∈ V
7978canth2 8670 . . . . . . . . . . . . . 14 𝑥 ≺ 𝒫 𝑥
80 sdomtr 8655 . . . . . . . . . . . . . 14 ((𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥𝐴) → 𝑥𝐴)
8179, 71, 80sylancr 589 . . . . . . . . . . . . 13 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝑥𝐴)
8281ralrimiva 3182 . . . . . . . . . . . 12 (𝑈 ∈ Univ → ∀𝑥𝐴 𝑥𝐴)
83 iscard 9404 . . . . . . . . . . . 12 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
8428, 82, 83sylanbrc 585 . . . . . . . . . . 11 (𝑈 ∈ Univ → (card‘𝐴) = 𝐴)
85 cardlim 9401 . . . . . . . . . . . 12 (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))
86 sseq2 3993 . . . . . . . . . . . . 13 ((card‘𝐴) = 𝐴 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ 𝐴))
87 limeq 6203 . . . . . . . . . . . . 13 ((card‘𝐴) = 𝐴 → (Lim (card‘𝐴) ↔ Lim 𝐴))
8886, 87bibi12d 348 . . . . . . . . . . . 12 ((card‘𝐴) = 𝐴 → ((ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) ↔ (ω ⊆ 𝐴 ↔ Lim 𝐴)))
8985, 88mpbii 235 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9084, 89syl 17 . . . . . . . . . 10 (𝑈 ∈ Univ → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9190adantr 483 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (ω ⊆ 𝐴 ↔ Lim 𝐴))
9277, 91mpbid 234 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → Lim 𝐴)
93 cflm 9672 . . . . . . . 8 ((𝐴 ∈ On ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
9429, 92, 93syl2anc 586 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
95 cardon 9373 . . . . . . . . . . . 12 (card‘𝑦) ∈ On
96 eleq1 2900 . . . . . . . . . . . 12 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
9795, 96mpbiri 260 . . . . . . . . . . 11 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
9897adantr 483 . . . . . . . . . 10 ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → 𝑥 ∈ On)
9998exlimiv 1931 . . . . . . . . 9 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → 𝑥 ∈ On)
10099abssi 4046 . . . . . . . 8 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ On
101 fvex 6683 . . . . . . . . . 10 (cf‘𝐴) ∈ V
10294, 101eqeltrrdi 2922 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ V)
103 intex 5240 . . . . . . . . 9 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅ ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ V)
104102, 103sylibr 236 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅)
105 onint 7510 . . . . . . . 8 (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
106100, 104, 105sylancr 589 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
10794, 106eqeltrd 2913 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
108 eqeq1 2825 . . . . . . . . 9 (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦)))
109108anbi1d 631 . . . . . . . 8 (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
110109exbidv 1922 . . . . . . 7 (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
111101, 110elab 3667 . . . . . 6 ((cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)))
112107, 111sylib 220 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)))
113 simp2rr 1239 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴 = 𝑦)
114 simp1l 1193 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑈 ∈ Univ)
115 simp2rl 1238 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝐴)
116115, 40sstrdi 3979 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
11740sseli 3963 . . . . . . . . . . 11 ((cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) ∈ 𝑈)
1181173ad2ant3 1131 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ∈ 𝑈)
119 simp2l 1195 . . . . . . . . . . 11 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) = (card‘𝑦))
120 vex 3497 . . . . . . . . . . . 12 𝑦 ∈ V
121120cardid 9969 . . . . . . . . . . 11 (card‘𝑦) ≈ 𝑦
122119, 121eqbrtrdi 5105 . . . . . . . . . 10 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → (cf‘𝐴) ≈ 𝑦)
123 gruen 10234 . . . . . . . . . 10 ((𝑈 ∈ Univ ∧ 𝑦𝑈 ∧ ((cf‘𝐴) ∈ 𝑈 ∧ (cf‘𝐴) ≈ 𝑦)) → 𝑦𝑈)
124114, 116, 118, 122, 123syl112anc 1370 . . . . . . . . 9 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
125 gruuni 10222 . . . . . . . . 9 ((𝑈 ∈ Univ ∧ 𝑦𝑈) → 𝑦𝑈)
126114, 124, 125syl2anc 586 . . . . . . . 8 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝑦𝑈)
127113, 126eqeltrd 2913 . . . . . . 7 (((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) ∧ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) ∧ (cf‘𝐴) ∈ 𝐴) → 𝐴𝑈)
1281273exp 1115 . . . . . 6 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈)))
129128exlimdv 1934 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈)))
130112, 129mpd 15 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ((cf‘𝐴) ∈ 𝐴𝐴𝑈))
13138, 130mtod 200 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ¬ (cf‘𝐴) ∈ 𝐴)
132 cfon 9677 . . . . 5 (cf‘𝐴) ∈ On
133 cfle 9676 . . . . . 6 (cf‘𝐴) ⊆ 𝐴
134 onsseleq 6232 . . . . . 6 (((cf‘𝐴) ∈ On ∧ 𝐴 ∈ On) → ((cf‘𝐴) ⊆ 𝐴 ↔ ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴)))
135133, 134mpbii 235 . . . . 5 (((cf‘𝐴) ∈ On ∧ 𝐴 ∈ On) → ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))
136132, 135mpan 688 . . . 4 (𝐴 ∈ On → ((cf‘𝐴) ∈ 𝐴 ∨ (cf‘𝐴) = 𝐴))
137136ord 860 . . 3 (𝐴 ∈ On → (¬ (cf‘𝐴) ∈ 𝐴 → (cf‘𝐴) = 𝐴))
13829, 131, 137sylc 65 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (cf‘𝐴) = 𝐴)
13972adantr 483 . 2 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∀𝑥𝐴 𝒫 𝑥𝐴)
140 elina 10109 . 2 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
14114, 138, 139, 140syl3anbrc 1339 1 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539   cuni 4838   cint 4876   class class class wbr 5066  Tr wtr 5172   E cep 5464   We wwe 5513  Ord word 6190  Oncon0 6191  Lim wlim 6192  cfv 6355  ωcom 7580  cen 8506  cdom 8507  csdm 8508  cardccrd 9364  cfccf 9366  Inacccina 10105  Univcgru 10212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-ac2 9885
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-1o 8102  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-card 9368  df-cf 9370  df-ac 9542  df-ina 10107  df-gru 10213
This theorem is referenced by:  grur1a  10241  grur1  10242  grutsk  10244
  Copyright terms: Public domain W3C validator