![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpaddat | Structured version Visualization version GIF version |
Description: Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.) |
Ref | Expression |
---|---|
paddfval.l | ⊢ ≤ = (le‘𝐾) |
paddfval.j | ⊢ ∨ = (join‘𝐾) |
paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddfval.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
elpaddat | ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1228 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝐾 ∈ Lat) | |
2 | simpl2 1230 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝑋 ⊆ 𝐴) | |
3 | simpl3 1232 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝑄 ∈ 𝐴) | |
4 | 3 | snssd 4485 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ⊆ 𝐴) |
5 | simpr 479 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) | |
6 | snnzg 4451 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → {𝑄} ≠ ∅) | |
7 | 3, 6 | syl 17 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → {𝑄} ≠ ∅) |
8 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
9 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
10 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
12 | 8, 9, 10, 11 | elpaddn0 35589 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ {𝑄} ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ {𝑄} ≠ ∅)) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟)))) |
13 | 1, 2, 4, 5, 7, 12 | syl32anc 1485 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟)))) |
14 | oveq2 6821 | . . . . . . 7 ⊢ (𝑟 = 𝑄 → (𝑝 ∨ 𝑟) = (𝑝 ∨ 𝑄)) | |
15 | 14 | breq2d 4816 | . . . . . 6 ⊢ (𝑟 = 𝑄 → (𝑆 ≤ (𝑝 ∨ 𝑟) ↔ 𝑆 ≤ (𝑝 ∨ 𝑄))) |
16 | 15 | rexsng 4363 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟) ↔ 𝑆 ≤ (𝑝 ∨ 𝑄))) |
17 | 3, 16 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟) ↔ 𝑆 ≤ (𝑝 ∨ 𝑄))) |
18 | 17 | rexbidv 3190 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟) ↔ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄))) |
19 | 18 | anbi2d 742 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → ((𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 ∃𝑟 ∈ {𝑄}𝑆 ≤ (𝑝 ∨ 𝑟)) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄)))) |
20 | 13, 19 | bitrd 268 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≠ ∅) → (𝑆 ∈ (𝑋 + {𝑄}) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑝 ∈ 𝑋 𝑆 ≤ (𝑝 ∨ 𝑄)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 ⊆ wss 3715 ∅c0 4058 {csn 4321 class class class wbr 4804 ‘cfv 6049 (class class class)co 6813 lecple 16150 joincjn 17145 Latclat 17246 Atomscatm 35053 +𝑃cpadd 35584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-lub 17175 df-join 17177 df-lat 17247 df-ats 35057 df-padd 35585 |
This theorem is referenced by: elpaddatiN 35594 elpadd2at 35595 pclfinclN 35739 |
Copyright terms: Public domain | W3C validator |