Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  findreccl Structured version   Visualization version   GIF version

Theorem findreccl 33801
Description: Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008.)
Hypothesis
Ref Expression
findreccl.1 (𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)
Assertion
Ref Expression
findreccl (𝐶 ∈ ω → (𝐴𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃))
Distinct variable groups:   𝑧,𝐺   𝑧,𝐴   𝑧,𝑃
Allowed substitution hint:   𝐶(𝑧)

Proof of Theorem findreccl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rdg0g 8063 . . 3 (𝐴𝑃 → (rec(𝐺, 𝐴)‘∅) = 𝐴)
2 eleq1a 2908 . . 3 (𝐴𝑃 → ((rec(𝐺, 𝐴)‘∅) = 𝐴 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃))
31, 2mpd 15 . 2 (𝐴𝑃 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃)
4 nnon 7586 . . . 4 (𝑦 ∈ ω → 𝑦 ∈ On)
5 fveq2 6670 . . . . . . 7 (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → (𝐺𝑧) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦)))
65eleq1d 2897 . . . . . 6 (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → ((𝐺𝑧) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃))
7 findreccl.1 . . . . . 6 (𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)
86, 7vtoclga 3574 . . . . 5 ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃)
9 rdgsuc 8060 . . . . . 6 (𝑦 ∈ On → (rec(𝐺, 𝐴)‘suc 𝑦) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦)))
109eleq1d 2897 . . . . 5 (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃))
118, 10syl5ibr 248 . . . 4 (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃))
124, 11syl 17 . . 3 (𝑦 ∈ ω → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃))
1312a1d 25 . 2 (𝑦 ∈ ω → (𝐴𝑃 → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃)))
143, 13findfvcl 33800 1 (𝐶 ∈ ω → (𝐴𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  c0 4291  Oncon0 6191  suc csuc 6193  cfv 6355  ωcom 7580  reccrdg 8045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046
This theorem is referenced by:  findabrcl  33802
  Copyright terms: Public domain W3C validator