Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpts Structured version   Visualization version   GIF version

Theorem fvmpts 6247
 Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
fvmpts.1 𝐹 = (𝑥𝐶𝐵)
Assertion
Ref Expression
fvmpts ((𝐴𝐶𝐴 / 𝑥𝐵𝑉) → (𝐹𝐴) = 𝐴 / 𝑥𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpts
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3521 . 2 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
2 fvmpts.1 . . 3 𝐹 = (𝑥𝐶𝐵)
3 nfcv 2761 . . . 4 𝑦𝐵
4 nfcsb1v 3534 . . . 4 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3527 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
63, 4, 5cbvmpt 4714 . . 3 (𝑥𝐶𝐵) = (𝑦𝐶𝑦 / 𝑥𝐵)
72, 6eqtri 2643 . 2 𝐹 = (𝑦𝐶𝑦 / 𝑥𝐵)
81, 7fvmptg 6242 1 ((𝐴𝐶𝐴 / 𝑥𝐵𝑉) → (𝐹𝐴) = 𝐴 / 𝑥𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ⦋csb 3518   ↦ cmpt 4678  ‘cfv 5852 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-iota 5815  df-fun 5854  df-fv 5860 This theorem is referenced by:  fvmptd  6250  fvmpt2curryd  7349  mptnn0fsupp  12745  mptnn0fsuppr  12747  zsum  14390  prodss  14613  fprodser  14615  fprodn0  14645  fprodefsum  14761  pcmpt  15531  issubc  16427  gsummptnn0fz  18314  mptscmfsupp0  18860  gsummoncoe1  19606  fvmptnn04if  20586  prdsdsf  22095  itgparts  23731  dchrisumlema  25094  abfmpeld  29319  abfmpel  29320  cdlemk40  35720  aomclem6  37144  ellimcabssub0  39281  constlimc  39288  vonn0ioo2  40237  vonn0icc2  40239
 Copyright terms: Public domain W3C validator