MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash1elsn Structured version   Visualization version   GIF version

Theorem hash1elsn 13729
Description: A set of size 1 with a known element is the singleton of that element. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
hash1elsn.1 (𝜑 → (♯‘𝐴) = 1)
hash1elsn.2 (𝜑𝐵𝐴)
hash1elsn.3 (𝜑𝐴𝑉)
Assertion
Ref Expression
hash1elsn (𝜑𝐴 = {𝐵})

Proof of Theorem hash1elsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hash1elsn.1 . . . 4 (𝜑 → (♯‘𝐴) = 1)
2 hash1elsn.3 . . . . 5 (𝜑𝐴𝑉)
3 hashen1 13728 . . . . 5 (𝐴𝑉 → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o))
42, 3syl 17 . . . 4 (𝜑 → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o))
51, 4mpbid 234 . . 3 (𝜑𝐴 ≈ 1o)
6 en1 8569 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
75, 6sylib 220 . 2 (𝜑 → ∃𝑥 𝐴 = {𝑥})
8 simpr 487 . . 3 ((𝜑𝐴 = {𝑥}) → 𝐴 = {𝑥})
9 hash1elsn.2 . . . . . . 7 (𝜑𝐵𝐴)
109adantr 483 . . . . . 6 ((𝜑𝐴 = {𝑥}) → 𝐵𝐴)
1110, 8eleqtrd 2914 . . . . 5 ((𝜑𝐴 = {𝑥}) → 𝐵 ∈ {𝑥})
12 elsni 4577 . . . . 5 (𝐵 ∈ {𝑥} → 𝐵 = 𝑥)
1311, 12syl 17 . . . 4 ((𝜑𝐴 = {𝑥}) → 𝐵 = 𝑥)
1413sneqd 4572 . . 3 ((𝜑𝐴 = {𝑥}) → {𝐵} = {𝑥})
158, 14eqtr4d 2858 . 2 ((𝜑𝐴 = {𝑥}) → 𝐴 = {𝐵})
167, 15exlimddv 1935 1 (𝜑𝐴 = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  {csn 4560   class class class wbr 5059  cfv 6348  1oc1o 8088  cen 8499  1c1 10531  chash 13687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12890  df-hash 13688
This theorem is referenced by:  prmgrpsimpgd  19231  ablsimpgprmd  19232
  Copyright terms: Public domain W3C validator