MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgrpsimpgd Structured version   Visualization version   GIF version

Theorem prmgrpsimpgd 19231
Description: A group of prime order is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
prmgrpsimpgd.1 𝐵 = (Base‘𝐺)
prmgrpsimpgd.2 (𝜑𝐺 ∈ Grp)
prmgrpsimpgd.3 (𝜑 → (♯‘𝐵) ∈ ℙ)
Assertion
Ref Expression
prmgrpsimpgd (𝜑𝐺 ∈ SimpGrp)

Proof of Theorem prmgrpsimpgd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmgrpsimpgd.1 . 2 𝐵 = (Base‘𝐺)
2 eqid 2820 . 2 (0g𝐺) = (0g𝐺)
3 prmgrpsimpgd.2 . 2 (𝜑𝐺 ∈ Grp)
4 fveq2 6663 . . . . . 6 ({(0g𝐺)} = 𝐵 → (♯‘{(0g𝐺)}) = (♯‘𝐵))
54adantl 484 . . . . 5 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘{(0g𝐺)}) = (♯‘𝐵))
62fvexi 6677 . . . . . 6 (0g𝐺) ∈ V
7 hashsng 13727 . . . . . 6 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
86, 7mp1i 13 . . . . 5 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘{(0g𝐺)}) = 1)
95, 8eqtr3d 2857 . . . 4 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘𝐵) = 1)
10 prmgrpsimpgd.3 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℙ)
1110adantr 483 . . . 4 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘𝐵) ∈ ℙ)
129, 11eqeltrrd 2913 . . 3 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → 1 ∈ ℙ)
13 1nprm 16018 . . . 4 ¬ 1 ∈ ℙ
1413a1i 11 . . 3 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → ¬ 1 ∈ ℙ)
1512, 14pm2.65da 815 . 2 (𝜑 → ¬ {(0g𝐺)} = 𝐵)
16 nsgsubg 18305 . . 3 (𝑥 ∈ (NrmSGrp‘𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
17 eqid 2820 . . . . . . . 8 (♯‘𝐵) = (♯‘𝐵)
181fvexi 6677 . . . . . . . . . 10 𝐵 ∈ V
1918a1i 11 . . . . . . . . 9 (𝜑𝐵 ∈ V)
20 prmnn 16013 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℙ → (♯‘𝐵) ∈ ℕ)
2110, 20syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝐵) ∈ ℕ)
2221nnnn0d 11949 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℕ0)
23 hashvnfin 13718 . . . . . . . . 9 ((𝐵 ∈ V ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐵) = (♯‘𝐵) → 𝐵 ∈ Fin))
2419, 22, 23syl2anc 586 . . . . . . . 8 (𝜑 → ((♯‘𝐵) = (♯‘𝐵) → 𝐵 ∈ Fin))
2517, 24mpi 20 . . . . . . 7 (𝜑𝐵 ∈ Fin)
2625ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝐵 ∈ Fin)
271subgss 18275 . . . . . . 7 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝐵)
2827ad2antlr 725 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝑥𝐵)
29 simpr 487 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → (♯‘𝑥) = (♯‘𝐵))
3026, 28, 29phphashrd 13822 . . . . 5 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝑥 = 𝐵)
3130olcd 870 . . . 4 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
32 simpr 487 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (♯‘𝑥) = 1)
332subg0cl 18282 . . . . . . 7 (𝑥 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑥)
3433ad2antlr 725 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (0g𝐺) ∈ 𝑥)
35 vex 3494 . . . . . . 7 𝑥 ∈ V
3635a1i 11 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → 𝑥 ∈ V)
3732, 34, 36hash1elsn 13729 . . . . 5 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → 𝑥 = {(0g𝐺)})
3837orcd 869 . . . 4 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
391lagsubg 18337 . . . . . . 7 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝑥) ∥ (♯‘𝐵))
4025, 39sylan2 594 . . . . . 6 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝜑) → (♯‘𝑥) ∥ (♯‘𝐵))
4140ancoms 461 . . . . 5 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∥ (♯‘𝐵))
4210adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝐵) ∈ ℙ)
4325adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝐵 ∈ Fin)
4427adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥𝐵)
4543, 44ssfid 8734 . . . . . . . 8 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥 ∈ Fin)
46 hashcl 13714 . . . . . . . 8 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
4745, 46syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∈ ℕ0)
4833adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (0g𝐺) ∈ 𝑥)
4935a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥 ∈ V)
5048, 49hashelne0d 13726 . . . . . . . 8 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ¬ (♯‘𝑥) = 0)
5150neqned 3022 . . . . . . 7 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ≠ 0)
52 elnnne0 11905 . . . . . . 7 ((♯‘𝑥) ∈ ℕ ↔ ((♯‘𝑥) ∈ ℕ0 ∧ (♯‘𝑥) ≠ 0))
5347, 51, 52sylanbrc 585 . . . . . 6 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∈ ℕ)
54 dvdsprime 16026 . . . . . 6 (((♯‘𝐵) ∈ ℙ ∧ (♯‘𝑥) ∈ ℕ) → ((♯‘𝑥) ∥ (♯‘𝐵) ↔ ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1)))
5542, 53, 54syl2anc 586 . . . . 5 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ((♯‘𝑥) ∥ (♯‘𝐵) ↔ ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1)))
5641, 55mpbid 234 . . . 4 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1))
5731, 38, 56mpjaodan 955 . . 3 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
5816, 57sylan2 594 . 2 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
591, 2, 3, 15, 582nsgsimpgd 19219 1 (𝜑𝐺 ∈ SimpGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  wne 3015  Vcvv 3491  wss 3929  {csn 4560   class class class wbr 5059  cfv 6348  Fincfn 8502  0cc0 10530  1c1 10531  cn 11631  0cn0 11891  chash 13687  cdvds 15602  cprime 16010  Basecbs 16478  0gc0g 16708  Grpcgrp 18098  SubGrpcsubg 18268  NrmSGrpcnsg 18269  SimpGrpcsimpg 19207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-ec 8284  df-qs 8288  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-oi 8967  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12890  df-fzo 13031  df-seq 13367  df-exp 13427  df-hash 13688  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-dvds 15603  df-prm 16011  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-nsg 18272  df-eqg 18273  df-simpg 19208
This theorem is referenced by:  ablsimpgd  19233  prmsimpcyc  30877
  Copyright terms: Public domain W3C validator