Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlexchb2 Structured version   Visualization version   GIF version

Theorem hlexchb2 34989
Description: A Hilbert lattice has the exchange property. (Contributed by NM, 22-Jun-2012.)
Hypotheses
Ref Expression
hlsuprexch.b 𝐵 = (Base‘𝐾)
hlsuprexch.l = (le‘𝐾)
hlsuprexch.j = (join‘𝐾)
hlsuprexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlexchb2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) ↔ (𝑃 𝑋) = (𝑄 𝑋)))

Proof of Theorem hlexchb2
StepHypRef Expression
1 hlcvl 34964 . 2 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
2 hlsuprexch.b . . 3 𝐵 = (Base‘𝐾)
3 hlsuprexch.l . . 3 = (le‘𝐾)
4 hlsuprexch.j . . 3 = (join‘𝐾)
5 hlsuprexch.a . . 3 𝐴 = (Atoms‘𝐾)
62, 3, 4, 5cvlexchb2 34936 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) ↔ (𝑃 𝑋) = (𝑄 𝑋)))
71, 6syl3an1 1399 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) ↔ (𝑃 𝑋) = (𝑄 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  Atomscatm 34868  CvLatclc 34870  HLchlt 34955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-lat 17093  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956
This theorem is referenced by:  3atlem1  35087  3atlem2  35088  4atlem9  35207  4atlem10a  35208  4atlem11a  35211  4atlem12a  35214
  Copyright terms: Public domain W3C validator