MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressffth Structured version   Visualization version   GIF version

Theorem ressffth 17208
Description: The inclusion functor from a full subcategory is a full and faithful functor, see also remark 4.4(2) in [Adamek] p. 49. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
ressffth.d 𝐷 = (𝐶s 𝑆)
ressffth.i 𝐼 = (idfunc𝐷)
Assertion
Ref Expression
ressffth ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐼 ∈ ((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶)))

Proof of Theorem ressffth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17132 . . 3 Rel (𝐷 Func 𝐷)
2 ressffth.d . . . . 5 𝐷 = (𝐶s 𝑆)
3 resscat 17122 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶s 𝑆) ∈ Cat)
42, 3eqeltrid 2917 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐷 ∈ Cat)
5 ressffth.i . . . . 5 𝐼 = (idfunc𝐷)
65idfucl 17151 . . . 4 (𝐷 ∈ Cat → 𝐼 ∈ (𝐷 Func 𝐷))
74, 6syl 17 . . 3 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐼 ∈ (𝐷 Func 𝐷))
8 1st2nd 7738 . . 3 ((Rel (𝐷 Func 𝐷) ∧ 𝐼 ∈ (𝐷 Func 𝐷)) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
91, 7, 8sylancr 589 . 2 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
10 eqidd 2822 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (Homf𝐷) = (Homf𝐷))
11 eqidd 2822 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (compf𝐷) = (compf𝐷))
12 eqid 2821 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
1312ressinbas 16560 . . . . . . . . . . . . 13 (𝑆𝑉 → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
1413adantl 484 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
152, 14syl5eq 2868 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐷 = (𝐶s (𝑆 ∩ (Base‘𝐶))))
1615fveq2d 6674 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (Homf𝐷) = (Homf ‘(𝐶s (𝑆 ∩ (Base‘𝐶)))))
17 eqid 2821 . . . . . . . . . . . 12 (Homf𝐶) = (Homf𝐶)
18 simpl 485 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐶 ∈ Cat)
19 inss2 4206 . . . . . . . . . . . . 13 (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)
2019a1i 11 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶))
21 eqid 2821 . . . . . . . . . . . 12 (𝐶s (𝑆 ∩ (Base‘𝐶))) = (𝐶s (𝑆 ∩ (Base‘𝐶)))
22 eqid 2821 . . . . . . . . . . . 12 (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) = (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))
2312, 17, 18, 20, 21, 22fullresc 17121 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ((Homf ‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ∧ (compf‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))))))
2423simpld 497 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (Homf ‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
2516, 24eqtrd 2856 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (Homf𝐷) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
2615fveq2d 6674 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (compf𝐷) = (compf‘(𝐶s (𝑆 ∩ (Base‘𝐶)))))
2723simprd 498 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (compf‘(𝐶s (𝑆 ∩ (Base‘𝐶)))) = (compf‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
2826, 27eqtrd 2856 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (compf𝐷) = (compf‘(𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
292ovexi 7190 . . . . . . . . . 10 𝐷 ∈ V
3029a1i 11 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐷 ∈ V)
31 ovexd 7191 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶))))) ∈ V)
3210, 11, 25, 28, 30, 30, 30, 31funcpropd 17170 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐷 Func 𝐷) = (𝐷 Func (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))))
3312, 17, 18, 20fullsubc 17120 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))) ∈ (Subcat‘𝐶))
34 funcres2 17168 . . . . . . . . 9 (((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))) ∈ (Subcat‘𝐶) → (𝐷 Func (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ⊆ (𝐷 Func 𝐶))
3533, 34syl 17 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐷 Func (𝐶cat ((Homf𝐶) ↾ ((𝑆 ∩ (Base‘𝐶)) × (𝑆 ∩ (Base‘𝐶)))))) ⊆ (𝐷 Func 𝐶))
3632, 35eqsstrd 4005 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (𝐷 Func 𝐷) ⊆ (𝐷 Func 𝐶))
3736, 7sseldd 3968 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐼 ∈ (𝐷 Func 𝐶))
389, 37eqeltrrd 2914 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐷 Func 𝐶))
39 df-br 5067 . . . . 5 ((1st𝐼)(𝐷 Func 𝐶)(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐷 Func 𝐶))
4038, 39sylibr 236 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (1st𝐼)(𝐷 Func 𝐶)(2nd𝐼))
41 f1oi 6652 . . . . . 6 ( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦)
42 eqid 2821 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
434adantr 483 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐷 ∈ Cat)
44 eqid 2821 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
45 simprl 769 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷))
46 simprr 771 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
475, 42, 43, 44, 45, 46idfu2nd 17147 . . . . . . 7 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐷)𝑦)))
48 eqidd 2822 . . . . . . 7 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
49 eqid 2821 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
502, 49resshom 16691 . . . . . . . . 9 (𝑆𝑉 → (Hom ‘𝐶) = (Hom ‘𝐷))
5150ad2antlr 725 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Hom ‘𝐶) = (Hom ‘𝐷))
525, 42, 43, 45idfu1 17150 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((1st𝐼)‘𝑥) = 𝑥)
535, 42, 43, 46idfu1 17150 . . . . . . . 8 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((1st𝐼)‘𝑦) = 𝑦)
5451, 52, 53oveq123d 7177 . . . . . . 7 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) = (𝑥(Hom ‘𝐷)𝑦))
5547, 48, 54f1oeq123d 6610 . . . . . 6 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)) ↔ ( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦)))
5641, 55mpbiri 260 . . . . 5 (((𝐶 ∈ Cat ∧ 𝑆𝑉) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
5756ralrimivva 3191 . . . 4 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦)))
5842, 44, 49isffth2 17186 . . . 4 ((1st𝐼)((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))(2nd𝐼) ↔ ((1st𝐼)(𝐷 Func 𝐶)(2nd𝐼) ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥(2nd𝐼)𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(((1st𝐼)‘𝑥)(Hom ‘𝐶)((1st𝐼)‘𝑦))))
5940, 57, 58sylanbrc 585 . . 3 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → (1st𝐼)((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))(2nd𝐼))
60 df-br 5067 . . 3 ((1st𝐼)((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶))(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶)))
6159, 60sylib 220 . 2 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ ((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶)))
629, 61eqeltrd 2913 1 ((𝐶 ∈ Cat ∧ 𝑆𝑉) → 𝐼 ∈ ((𝐷 Full 𝐶) ∩ (𝐷 Faith 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cin 3935  wss 3936  cop 4573   class class class wbr 5066   I cid 5459   × cxp 5553  cres 5557  Rel wrel 5560  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  Basecbs 16483  s cress 16484  Hom chom 16576  Catccat 16935  Homf chomf 16937  compfccomf 16938  cat cresc 17078  Subcatcsubc 17079   Func cfunc 17124  idfunccidfu 17125   Full cful 17172   Faith cfth 17173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-hom 16589  df-cco 16590  df-cat 16939  df-cid 16940  df-homf 16941  df-comf 16942  df-ssc 17080  df-resc 17081  df-subc 17082  df-func 17128  df-idfu 17129  df-full 17174  df-fth 17175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator