Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval Structured version   Visualization version   GIF version

Theorem qqhval 29992
Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval.1 / = (/r𝑅)
qqhval.2 1 = (1r𝑅)
qqhval.3 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑦,𝐿
Allowed substitution hints:   / (𝑥,𝑦)   1 (𝑥,𝑦)   𝐿(𝑥)

Proof of Theorem qqhval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2621 . . . 4 (𝑓 = 𝑅 → ℤ = ℤ)
2 fveq2 6178 . . . . . . 7 (𝑓 = 𝑅 → (ℤRHom‘𝑓) = (ℤRHom‘𝑅))
3 qqhval.3 . . . . . . 7 𝐿 = (ℤRHom‘𝑅)
42, 3syl6eqr 2672 . . . . . 6 (𝑓 = 𝑅 → (ℤRHom‘𝑓) = 𝐿)
54cnveqd 5287 . . . . 5 (𝑓 = 𝑅(ℤRHom‘𝑓) = 𝐿)
6 fveq2 6178 . . . . 5 (𝑓 = 𝑅 → (Unit‘𝑓) = (Unit‘𝑅))
75, 6imaeq12d 5455 . . . 4 (𝑓 = 𝑅 → ((ℤRHom‘𝑓) “ (Unit‘𝑓)) = (𝐿 “ (Unit‘𝑅)))
8 fveq2 6178 . . . . . . 7 (𝑓 = 𝑅 → (/r𝑓) = (/r𝑅))
9 qqhval.1 . . . . . . 7 / = (/r𝑅)
108, 9syl6eqr 2672 . . . . . 6 (𝑓 = 𝑅 → (/r𝑓) = / )
114fveq1d 6180 . . . . . 6 (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑥) = (𝐿𝑥))
124fveq1d 6180 . . . . . 6 (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑦) = (𝐿𝑦))
1310, 11, 12oveq123d 6656 . . . . 5 (𝑓 = 𝑅 → (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦)) = ((𝐿𝑥) / (𝐿𝑦)))
1413opeq2d 4400 . . . 4 (𝑓 = 𝑅 → ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩ = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
151, 7, 14mpt2eq123dv 6702 . . 3 (𝑓 = 𝑅 → (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
1615rneqd 5342 . 2 (𝑓 = 𝑅 → ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
17 df-qqh 29991 . 2 ℚHom = (𝑓 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩))
18 zex 11371 . . . 4 ℤ ∈ V
19 fvex 6188 . . . . . . 7 (ℤRHom‘𝑅) ∈ V
203, 19eqeltri 2695 . . . . . 6 𝐿 ∈ V
2120cnvex 7098 . . . . 5 𝐿 ∈ V
22 imaexg 7088 . . . . 5 (𝐿 ∈ V → (𝐿 “ (Unit‘𝑅)) ∈ V)
2321, 22ax-mp 5 . . . 4 (𝐿 “ (Unit‘𝑅)) ∈ V
2418, 23mpt2ex 7232 . . 3 (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) ∈ V
2524rnex 7085 . 2 ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) ∈ V
2616, 17, 25fvmpt 6269 1 (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1481  wcel 1988  Vcvv 3195  cop 4174  ccnv 5103  ran crn 5105  cima 5107  cfv 5876  (class class class)co 6635  cmpt2 6637   / cdiv 10669  cz 11362  1rcur 18482  Unitcui 18620  /rcdvr 18663  ℤRHomczrh 19829  ℚHomcqqh 29990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-neg 10254  df-z 11363  df-qqh 29991
This theorem is referenced by:  qqhval2  30000
  Copyright terms: Public domain W3C validator