Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isat3 Structured version   Visualization version   GIF version

Theorem isat3 36475
Description: The predicate "is an atom". (elat2 30101 analog.) (Contributed by NM, 27-Apr-2014.)
Hypotheses
Ref Expression
isat3.b 𝐵 = (Base‘𝐾)
isat3.l = (le‘𝐾)
isat3.z 0 = (0.‘𝐾)
isat3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isat3 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑃   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   (𝑥)

Proof of Theorem isat3
StepHypRef Expression
1 isat3.b . . . 4 𝐵 = (Base‘𝐾)
2 isat3.z . . . 4 0 = (0.‘𝐾)
3 eqid 2821 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 isat3.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4isat 36454 . . 3 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵0 ( ⋖ ‘𝐾)𝑃)))
6 simpl 485 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 𝐾 ∈ AtLat)
71, 2atl0cl 36471 . . . . . . 7 (𝐾 ∈ AtLat → 0𝐵)
87adantr 483 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 0𝐵)
9 simpr 487 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 𝑃𝐵)
10 isat3.l . . . . . . 7 = (le‘𝐾)
11 eqid 2821 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
121, 10, 11, 3cvrval2 36442 . . . . . 6 ((𝐾 ∈ AtLat ∧ 0𝐵𝑃𝐵) → ( 0 ( ⋖ ‘𝐾)𝑃 ↔ ( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃))))
136, 8, 9, 12syl3anc 1367 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ( 0 ( ⋖ ‘𝐾)𝑃 ↔ ( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃))))
141, 11, 2atlltn0 36474 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ( 0 (lt‘𝐾)𝑃𝑃0 ))
151, 11, 2atlltn0 36474 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑥𝐵) → ( 0 (lt‘𝐾)𝑥𝑥0 ))
1615adantlr 713 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ( 0 (lt‘𝐾)𝑥𝑥0 ))
1716imbi1d 344 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → (( 0 (lt‘𝐾)𝑥𝑥 = 𝑃) ↔ (𝑥0𝑥 = 𝑃)))
1817imbi2d 343 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ((𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)) ↔ (𝑥 𝑃 → (𝑥0𝑥 = 𝑃))))
19 impexp 453 . . . . . . . . 9 ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ ( 0 (lt‘𝐾)𝑥 → (𝑥 𝑃𝑥 = 𝑃)))
20 bi2.04 391 . . . . . . . . 9 (( 0 (lt‘𝐾)𝑥 → (𝑥 𝑃𝑥 = 𝑃)) ↔ (𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)))
2119, 20bitri 277 . . . . . . . 8 ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ (𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)))
22 orcom 866 . . . . . . . . . 10 ((𝑥 = 𝑃𝑥 = 0 ) ↔ (𝑥 = 0𝑥 = 𝑃))
23 neor 3108 . . . . . . . . . 10 ((𝑥 = 0𝑥 = 𝑃) ↔ (𝑥0𝑥 = 𝑃))
2422, 23bitri 277 . . . . . . . . 9 ((𝑥 = 𝑃𝑥 = 0 ) ↔ (𝑥0𝑥 = 𝑃))
2524imbi2i 338 . . . . . . . 8 ((𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )) ↔ (𝑥 𝑃 → (𝑥0𝑥 = 𝑃)))
2618, 21, 253bitr4g 316 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))
2726ralbidva 3196 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → (∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))
2814, 27anbi12d 632 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → (( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃)) ↔ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
2913, 28bitr2d 282 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ((𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))) ↔ 0 ( ⋖ ‘𝐾)𝑃))
3029pm5.32da 581 . . 3 (𝐾 ∈ AtLat → ((𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))) ↔ (𝑃𝐵0 ( ⋖ ‘𝐾)𝑃)))
315, 30bitr4d 284 . 2 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))))
32 3anass 1091 . 2 ((𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))) ↔ (𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
3331, 32syl6bbr 291 1 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138   class class class wbr 5052  cfv 6341  Basecbs 16466  lecple 16555  ltcplt 17534  0.cp0 17630  ccvr 36430  Atomscatm 36431  AtLatcal 36432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-plt 17551  df-glb 17568  df-p0 17632  df-covers 36434  df-ats 36435  df-atl 36466
This theorem is referenced by:  atn0  36476  dihlspsnat  38501
  Copyright terms: Public domain W3C validator