MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcf Structured version   Visualization version   GIF version

Theorem isfcf 21778
Description: The property of being a cluster point of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
isfcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
Distinct variable groups:   𝐴,𝑜   𝑜,𝑠,𝐽   𝑜,𝐿,𝑠   𝑜,𝐹,𝑠   𝑜,𝑋,𝑠   𝑜,𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem isfcf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fcfval 21777 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
21eleq2d 2684 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ 𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))))
3 simp1 1059 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4 toponmax 20670 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
5 filfbas 21592 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
6 id 22 . . . 4 (𝐹:𝑌𝑋𝐹:𝑌𝑋)
7 fmfil 21688 . . . 4 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
84, 5, 6, 7syl3an 1365 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
9 fclsopn 21758 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅))))
103, 8, 9syl2anc 692 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅))))
11 simpll1 1098 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐽 ∈ (TopOn‘𝑋))
1211, 4syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝑋𝐽)
13 simpll2 1099 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐿 ∈ (Fil‘𝑌))
1413, 5syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐿 ∈ (fBas‘𝑌))
15 simpll3 1100 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐹:𝑌𝑋)
16 simpl2 1063 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → 𝐿 ∈ (Fil‘𝑌))
17 fgfil 21619 . . . . . . . . . . . 12 (𝐿 ∈ (Fil‘𝑌) → (𝑌filGen𝐿) = 𝐿)
1816, 17syl 17 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (𝑌filGen𝐿) = 𝐿)
1918eleq2d 2684 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (𝑠 ∈ (𝑌filGen𝐿) ↔ 𝑠𝐿))
2019biimpar 502 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝑠 ∈ (𝑌filGen𝐿))
21 eqid 2621 . . . . . . . . . 10 (𝑌filGen𝐿) = (𝑌filGen𝐿)
2221imaelfm 21695 . . . . . . . . 9 (((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐿)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿))
2312, 14, 15, 20, 22syl31anc 1326 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿))
24 ineq2 3792 . . . . . . . . . 10 (𝑥 = (𝐹𝑠) → (𝑜𝑥) = (𝑜 ∩ (𝐹𝑠)))
2524neeq1d 2849 . . . . . . . . 9 (𝑥 = (𝐹𝑠) → ((𝑜𝑥) ≠ ∅ ↔ (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
2625rspcv 3295 . . . . . . . 8 ((𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ → (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
2723, 26syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ → (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
2827ralrimdva 2965 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
29 elfm 21691 . . . . . . . . . . 11 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
304, 5, 6, 29syl3an 1365 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
3130adantr 481 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
3231simplbda 653 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)
33 r19.29r 3068 . . . . . . . . . 10 ((∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥 ∧ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∃𝑠𝐿 ((𝐹𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
34 sslin 3823 . . . . . . . . . . . 12 ((𝐹𝑠) ⊆ 𝑥 → (𝑜 ∩ (𝐹𝑠)) ⊆ (𝑜𝑥))
35 ssn0 3954 . . . . . . . . . . . 12 (((𝑜 ∩ (𝐹𝑠)) ⊆ (𝑜𝑥) ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3634, 35sylan 488 . . . . . . . . . . 11 (((𝐹𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3736rexlimivw 3024 . . . . . . . . . 10 (∃𝑠𝐿 ((𝐹𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3833, 37syl 17 . . . . . . . . 9 ((∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥 ∧ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3938ex 450 . . . . . . . 8 (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥 → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ → (𝑜𝑥) ≠ ∅))
4032, 39syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ → (𝑜𝑥) ≠ ∅))
4140ralrimdva 2965 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅))
4228, 41impbid 202 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ ↔ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4342imbi2d 330 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → ((𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
4443ralbidva 2981 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
4544anbi2d 739 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
462, 10, 453bitrd 294 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2908  wrex 2909  cin 3559  wss 3560  c0 3897  cima 5087  wf 5853  cfv 5857  (class class class)co 6615  fBascfbas 19674  filGencfg 19675  TopOnctopon 20655  Filcfil 21589   FilMap cfm 21677   fClus cfcls 21680   fClusf cfcf 21681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-map 7819  df-fbas 19683  df-fg 19684  df-top 20639  df-topon 20656  df-cld 20763  df-ntr 20764  df-cls 20765  df-fil 21590  df-fm 21682  df-fcls 21685  df-fcf 21686
This theorem is referenced by:  fcfnei  21779
  Copyright terms: Public domain W3C validator