MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaelfm Structured version   Visualization version   GIF version

Theorem imaelfm 21749
Description: An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
imaelfm.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
imaelfm (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → (𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵))

Proof of Theorem imaelfm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imassrn 5475 . . . . 5 (𝐹𝑆) ⊆ ran 𝐹
2 frn 6051 . . . . 5 (𝐹:𝑌𝑋 → ran 𝐹𝑋)
31, 2syl5ss 3612 . . . 4 (𝐹:𝑌𝑋 → (𝐹𝑆) ⊆ 𝑋)
433ad2ant3 1083 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑆) ⊆ 𝑋)
5 ssid 3622 . . . 4 (𝐹𝑆) ⊆ (𝐹𝑆)
6 imaeq2 5460 . . . . . 6 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
76sseq1d 3630 . . . . 5 (𝑥 = 𝑆 → ((𝐹𝑥) ⊆ (𝐹𝑆) ↔ (𝐹𝑆) ⊆ (𝐹𝑆)))
87rspcev 3307 . . . 4 ((𝑆𝐿 ∧ (𝐹𝑆) ⊆ (𝐹𝑆)) → ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))
95, 8mpan2 707 . . 3 (𝑆𝐿 → ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))
104, 9anim12i 590 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → ((𝐹𝑆) ⊆ 𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆)))
11 imaelfm.l . . . 4 𝐿 = (𝑌filGen𝐵)
1211elfm2 21746 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹𝑆) ⊆ 𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))))
1312adantr 481 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → ((𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ((𝐹𝑆) ⊆ 𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ (𝐹𝑆))))
1410, 13mpbird 247 1 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑆𝐿) → (𝐹𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1482  wcel 1989  wrex 2912  wss 3572  ran crn 5113  cima 5115  wf 5882  cfv 5886  (class class class)co 6647  fBascfbas 19728  filGencfg 19729   FilMap cfm 21731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-fbas 19737  df-fg 19738  df-fm 21736
This theorem is referenced by:  rnelfm  21751  fmfnfmlem2  21753  fmfnfmlem4  21755  fmfnfm  21756  fmco  21759  isfcf  21832  cnextcn  21865
  Copyright terms: Public domain W3C validator