MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfild Structured version   Visualization version   GIF version

Theorem isfild 22466
Description: Sufficient condition for a set of the form {𝑥 ∈ 𝒫 𝐴𝜑} to be a filter. (Contributed by Mario Carneiro, 1-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Hypotheses
Ref Expression
isfild.1 (𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓)))
isfild.2 (𝜑𝐴 ∈ V)
isfild.3 (𝜑[𝐴 / 𝑥]𝜓)
isfild.4 (𝜑 → ¬ [∅ / 𝑥]𝜓)
isfild.5 ((𝜑𝑦𝐴𝑧𝑦) → ([𝑧 / 𝑥]𝜓[𝑦 / 𝑥]𝜓))
isfild.6 ((𝜑𝑦𝐴𝑧𝐴) → (([𝑦 / 𝑥]𝜓[𝑧 / 𝑥]𝜓) → [(𝑦𝑧) / 𝑥]𝜓))
Assertion
Ref Expression
isfild (𝜑𝐹 ∈ (Fil‘𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝐴   𝑥,𝐹,𝑦   𝑦,𝑧,𝐹   𝜑,𝑥,𝑦   𝜑,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧)

Proof of Theorem isfild
StepHypRef Expression
1 isfild.1 . . . . 5 (𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓)))
2 velpw 4544 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32biimpri 230 . . . . . 6 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
43adantr 483 . . . . 5 ((𝑥𝐴𝜓) → 𝑥 ∈ 𝒫 𝐴)
51, 4syl6bi 255 . . . 4 (𝜑 → (𝑥𝐹𝑥 ∈ 𝒫 𝐴))
65ssrdv 3973 . . 3 (𝜑𝐹 ⊆ 𝒫 𝐴)
7 isfild.4 . . . 4 (𝜑 → ¬ [∅ / 𝑥]𝜓)
8 isfild.2 . . . . . 6 (𝜑𝐴 ∈ V)
91, 8isfildlem 22465 . . . . 5 (𝜑 → (∅ ∈ 𝐹 ↔ (∅ ⊆ 𝐴[∅ / 𝑥]𝜓)))
10 simpr 487 . . . . 5 ((∅ ⊆ 𝐴[∅ / 𝑥]𝜓) → [∅ / 𝑥]𝜓)
119, 10syl6bi 255 . . . 4 (𝜑 → (∅ ∈ 𝐹[∅ / 𝑥]𝜓))
127, 11mtod 200 . . 3 (𝜑 → ¬ ∅ ∈ 𝐹)
13 isfild.3 . . . . 5 (𝜑[𝐴 / 𝑥]𝜓)
14 ssid 3989 . . . . 5 𝐴𝐴
1513, 14jctil 522 . . . 4 (𝜑 → (𝐴𝐴[𝐴 / 𝑥]𝜓))
161, 8isfildlem 22465 . . . 4 (𝜑 → (𝐴𝐹 ↔ (𝐴𝐴[𝐴 / 𝑥]𝜓)))
1715, 16mpbird 259 . . 3 (𝜑𝐴𝐹)
186, 12, 173jca 1124 . 2 (𝜑 → (𝐹 ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ 𝐹𝐴𝐹))
19 elpwi 4548 . . . 4 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
20 isfild.5 . . . . . . . . . . 11 ((𝜑𝑦𝐴𝑧𝑦) → ([𝑧 / 𝑥]𝜓[𝑦 / 𝑥]𝜓))
21 simp2 1133 . . . . . . . . . . 11 ((𝜑𝑦𝐴𝑧𝑦) → 𝑦𝐴)
2220, 21jctild 528 . . . . . . . . . 10 ((𝜑𝑦𝐴𝑧𝑦) → ([𝑧 / 𝑥]𝜓 → (𝑦𝐴[𝑦 / 𝑥]𝜓)))
2322adantld 493 . . . . . . . . 9 ((𝜑𝑦𝐴𝑧𝑦) → ((𝑧𝐴[𝑧 / 𝑥]𝜓) → (𝑦𝐴[𝑦 / 𝑥]𝜓)))
241, 8isfildlem 22465 . . . . . . . . . 10 (𝜑 → (𝑧𝐹 ↔ (𝑧𝐴[𝑧 / 𝑥]𝜓)))
25243ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑦𝐴𝑧𝑦) → (𝑧𝐹 ↔ (𝑧𝐴[𝑧 / 𝑥]𝜓)))
261, 8isfildlem 22465 . . . . . . . . . 10 (𝜑 → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))
27263ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑦𝐴𝑧𝑦) → (𝑦𝐹 ↔ (𝑦𝐴[𝑦 / 𝑥]𝜓)))
2823, 25, 273imtr4d 296 . . . . . . . 8 ((𝜑𝑦𝐴𝑧𝑦) → (𝑧𝐹𝑦𝐹))
29283expa 1114 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝑧𝑦) → (𝑧𝐹𝑦𝐹))
3029impancom 454 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝑧𝐹) → (𝑧𝑦𝑦𝐹))
3130rexlimdva 3284 . . . . 5 ((𝜑𝑦𝐴) → (∃𝑧𝐹 𝑧𝑦𝑦𝐹))
3231ex 415 . . . 4 (𝜑 → (𝑦𝐴 → (∃𝑧𝐹 𝑧𝑦𝑦𝐹)))
3319, 32syl5 34 . . 3 (𝜑 → (𝑦 ∈ 𝒫 𝐴 → (∃𝑧𝐹 𝑧𝑦𝑦𝐹)))
3433ralrimiv 3181 . 2 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(∃𝑧𝐹 𝑧𝑦𝑦𝐹))
35 ssinss1 4214 . . . . . . 7 (𝑦𝐴 → (𝑦𝑧) ⊆ 𝐴)
3635ad2antrr 724 . . . . . 6 (((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓)) → (𝑦𝑧) ⊆ 𝐴)
3736a1i 11 . . . . 5 (𝜑 → (((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓)) → (𝑦𝑧) ⊆ 𝐴))
38 an4 654 . . . . . 6 (((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓)) ↔ ((𝑦𝐴𝑧𝐴) ∧ ([𝑦 / 𝑥]𝜓[𝑧 / 𝑥]𝜓)))
39 isfild.6 . . . . . . . 8 ((𝜑𝑦𝐴𝑧𝐴) → (([𝑦 / 𝑥]𝜓[𝑧 / 𝑥]𝜓) → [(𝑦𝑧) / 𝑥]𝜓))
40393expb 1116 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → (([𝑦 / 𝑥]𝜓[𝑧 / 𝑥]𝜓) → [(𝑦𝑧) / 𝑥]𝜓))
4140expimpd 456 . . . . . 6 (𝜑 → (((𝑦𝐴𝑧𝐴) ∧ ([𝑦 / 𝑥]𝜓[𝑧 / 𝑥]𝜓)) → [(𝑦𝑧) / 𝑥]𝜓))
4238, 41syl5bi 244 . . . . 5 (𝜑 → (((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓)) → [(𝑦𝑧) / 𝑥]𝜓))
4337, 42jcad 515 . . . 4 (𝜑 → (((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓)) → ((𝑦𝑧) ⊆ 𝐴[(𝑦𝑧) / 𝑥]𝜓)))
4426, 24anbi12d 632 . . . 4 (𝜑 → ((𝑦𝐹𝑧𝐹) ↔ ((𝑦𝐴[𝑦 / 𝑥]𝜓) ∧ (𝑧𝐴[𝑧 / 𝑥]𝜓))))
451, 8isfildlem 22465 . . . 4 (𝜑 → ((𝑦𝑧) ∈ 𝐹 ↔ ((𝑦𝑧) ⊆ 𝐴[(𝑦𝑧) / 𝑥]𝜓)))
4643, 44, 453imtr4d 296 . . 3 (𝜑 → ((𝑦𝐹𝑧𝐹) → (𝑦𝑧) ∈ 𝐹))
4746ralrimivv 3190 . 2 (𝜑 → ∀𝑦𝐹𝑧𝐹 (𝑦𝑧) ∈ 𝐹)
48 isfil2 22464 . 2 (𝐹 ∈ (Fil‘𝐴) ↔ ((𝐹 ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ 𝐹𝐴𝐹) ∧ ∀𝑦 ∈ 𝒫 𝐴(∃𝑧𝐹 𝑧𝑦𝑦𝐹) ∧ ∀𝑦𝐹𝑧𝐹 (𝑦𝑧) ∈ 𝐹))
4918, 34, 47, 48syl3anbrc 1339 1 (𝜑𝐹 ∈ (Fil‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  [wsbc 3772  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  cfv 6355  Filcfil 22453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fv 6363  df-fbas 20542  df-fil 22454
This theorem is referenced by:  snfil  22472  fgcl  22486  filuni  22493  cfinfil  22501  csdfil  22502  supfil  22503  fin1aufil  22540
  Copyright terms: Public domain W3C validator