MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isghm Structured version   Visualization version   GIF version

Theorem isghm 18358
Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
isghm.w 𝑋 = (Base‘𝑆)
isghm.x 𝑌 = (Base‘𝑇)
isghm.a + = (+g𝑆)
isghm.b = (+g𝑇)
Assertion
Ref Expression
isghm (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Distinct variable groups:   𝑣,𝑢,𝑆   𝑢,𝑇,𝑣   𝑢,𝑋,𝑣   𝑢, + ,𝑣   𝑢,𝑌,𝑣   𝑢, ,𝑣   𝑢,𝐹,𝑣

Proof of Theorem isghm
Dummy variables 𝑡 𝑠 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 18356 . . 3 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
21elmpocl 7387 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
3 fvex 6683 . . . . . . . 8 (Base‘𝑠) ∈ V
4 feq2 6496 . . . . . . . . 9 (𝑤 = (Base‘𝑠) → (𝑓:𝑤⟶(Base‘𝑡) ↔ 𝑓:(Base‘𝑠)⟶(Base‘𝑡)))
5 raleq 3405 . . . . . . . . . 10 (𝑤 = (Base‘𝑠) → (∀𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
65raleqbi1dv 3403 . . . . . . . . 9 (𝑤 = (Base‘𝑠) → (∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
74, 6anbi12d 632 . . . . . . . 8 (𝑤 = (Base‘𝑠) → ((𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
83, 7sbcie 3812 . . . . . . 7 ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
9 fveq2 6670 . . . . . . . . . 10 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
10 isghm.w . . . . . . . . . 10 𝑋 = (Base‘𝑆)
119, 10syl6eqr 2874 . . . . . . . . 9 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑋)
1211feq2d 6500 . . . . . . . 8 (𝑠 = 𝑆 → (𝑓:(Base‘𝑠)⟶(Base‘𝑡) ↔ 𝑓:𝑋⟶(Base‘𝑡)))
13 fveq2 6670 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
14 isghm.a . . . . . . . . . . . . 13 + = (+g𝑆)
1513, 14syl6eqr 2874 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (+g𝑠) = + )
1615oveqd 7173 . . . . . . . . . . 11 (𝑠 = 𝑆 → (𝑢(+g𝑠)𝑣) = (𝑢 + 𝑣))
1716fveqeq2d 6678 . . . . . . . . . 10 (𝑠 = 𝑆 → ((𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
1811, 17raleqbidv 3401 . . . . . . . . 9 (𝑠 = 𝑆 → (∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
1911, 18raleqbidv 3401 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))))
2012, 19anbi12d 632 . . . . . . 7 (𝑠 = 𝑆 → ((𝑓:(Base‘𝑠)⟶(Base‘𝑡) ∧ ∀𝑢 ∈ (Base‘𝑠)∀𝑣 ∈ (Base‘𝑠)(𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
218, 20syl5bb 285 . . . . . 6 (𝑠 = 𝑆 → ([(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))))
2221abbidv 2885 . . . . 5 (𝑠 = 𝑆 → {𝑓[(Base‘𝑠) / 𝑤](𝑓:𝑤⟶(Base‘𝑡) ∧ ∀𝑢𝑤𝑣𝑤 (𝑓‘(𝑢(+g𝑠)𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))})
23 fveq2 6670 . . . . . . . . 9 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
24 isghm.x . . . . . . . . 9 𝑌 = (Base‘𝑇)
2523, 24syl6eqr 2874 . . . . . . . 8 (𝑡 = 𝑇 → (Base‘𝑡) = 𝑌)
2625feq3d 6501 . . . . . . 7 (𝑡 = 𝑇 → (𝑓:𝑋⟶(Base‘𝑡) ↔ 𝑓:𝑋𝑌))
27 fveq2 6670 . . . . . . . . . . 11 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
28 isghm.b . . . . . . . . . . 11 = (+g𝑇)
2927, 28syl6eqr 2874 . . . . . . . . . 10 (𝑡 = 𝑇 → (+g𝑡) = )
3029oveqd 7173 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) = ((𝑓𝑢) (𝑓𝑣)))
3130eqeq2d 2832 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
32312ralbidv 3199 . . . . . . 7 (𝑡 = 𝑇 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))))
3326, 32anbi12d 632 . . . . . 6 (𝑡 = 𝑇 → ((𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣))) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))))
3433abbidv 2885 . . . . 5 (𝑡 = 𝑇 → {𝑓 ∣ (𝑓:𝑋⟶(Base‘𝑡) ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢)(+g𝑡)(𝑓𝑣)))} = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
3510fvexi 6684 . . . . . . 7 𝑋 ∈ V
3624fvexi 6684 . . . . . . 7 𝑌 ∈ V
37 mapex 8412 . . . . . . 7 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑓𝑓:𝑋𝑌} ∈ V)
3835, 36, 37mp2an 690 . . . . . 6 {𝑓𝑓:𝑋𝑌} ∈ V
39 simpl 485 . . . . . . 7 ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) → 𝑓:𝑋𝑌)
4039ss2abi 4043 . . . . . 6 {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ⊆ {𝑓𝑓:𝑋𝑌}
4138, 40ssexi 5226 . . . . 5 {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ∈ V
4222, 34, 1, 41ovmpo 7310 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))})
4342eleq2d 2898 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))}))
44 fex 6989 . . . . . 6 ((𝐹:𝑋𝑌𝑋 ∈ V) → 𝐹 ∈ V)
4535, 44mpan2 689 . . . . 5 (𝐹:𝑋𝑌𝐹 ∈ V)
4645adantr 483 . . . 4 ((𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))) → 𝐹 ∈ V)
47 feq1 6495 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝑋𝑌𝐹:𝑋𝑌))
48 fveq1 6669 . . . . . . 7 (𝑓 = 𝐹 → (𝑓‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝑣)))
49 fveq1 6669 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑢) = (𝐹𝑢))
50 fveq1 6669 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑣) = (𝐹𝑣))
5149, 50oveq12d 7174 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑢) (𝑓𝑣)) = ((𝐹𝑢) (𝐹𝑣)))
5248, 51eqeq12d 2837 . . . . . 6 (𝑓 = 𝐹 → ((𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
53522ralbidv 3199 . . . . 5 (𝑓 = 𝐹 → (∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)) ↔ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
5447, 53anbi12d 632 . . . 4 (𝑓 = 𝐹 → ((𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
5546, 54elab3 3674 . . 3 (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝑓‘(𝑢 + 𝑣)) = ((𝑓𝑢) (𝑓𝑣)))} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣))))
5643, 55syl6bb 289 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
572, 56biadanii 820 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑢𝑋𝑣𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹𝑢) (𝐹𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2799  wral 3138  Vcvv 3494  [wsbc 3772  wf 6351  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Grpcgrp 18103   GrpHom cghm 18355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-ghm 18356
This theorem is referenced by:  isghm3  18359  ghmgrp1  18360  ghmgrp2  18361  ghmf  18362  ghmlin  18363  isghmd  18367  idghm  18373  ghmf1o  18388  islmhm2  19810  expghm  20643  mulgghm2  20644  pi1xfr  23659  pi1coghm  23665  rhmopp  30892  isrnghm  44183
  Copyright terms: Public domain W3C validator