MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1coghm Structured version   Visualization version   GIF version

Theorem pi1coghm 23665
Description: The mapping 𝐺 between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p 𝑃 = (𝐽 π1 𝐴)
pi1co.q 𝑄 = (𝐾 π1 𝐵)
pi1co.v 𝑉 = (Base‘𝑃)
pi1co.g 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
pi1co.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1co.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
pi1co.a (𝜑𝐴𝑋)
pi1co.b (𝜑 → (𝐹𝐴) = 𝐵)
Assertion
Ref Expression
pi1coghm (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Distinct variable groups:   𝐴,𝑔   𝑔,𝐹   𝑔,𝐽   𝜑,𝑔   𝑔,𝐾   𝑃,𝑔   𝑄,𝑔   𝑔,𝑉
Allowed substitution hints:   𝐵(𝑔)   𝐺(𝑔)   𝑋(𝑔)

Proof of Theorem pi1coghm
Dummy variables 𝑓 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 pi1co.a . . 3 (𝜑𝐴𝑋)
3 pi1co.p . . . 4 𝑃 = (𝐽 π1 𝐴)
43pi1grp 23654 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑃 ∈ Grp)
51, 2, 4syl2anc 586 . 2 (𝜑𝑃 ∈ Grp)
6 pi1co.f . . . . 5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
7 cntop2 21849 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
86, 7syl 17 . . . 4 (𝜑𝐾 ∈ Top)
9 toptopon2 21526 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
108, 9sylib 220 . . 3 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
11 pi1co.b . . . 4 (𝜑 → (𝐹𝐴) = 𝐵)
12 cnf2 21857 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋 𝐾)
131, 10, 6, 12syl3anc 1367 . . . . 5 (𝜑𝐹:𝑋 𝐾)
1413, 2ffvelrnd 6852 . . . 4 (𝜑 → (𝐹𝐴) ∈ 𝐾)
1511, 14eqeltrrd 2914 . . 3 (𝜑𝐵 𝐾)
16 pi1co.q . . . 4 𝑄 = (𝐾 π1 𝐵)
1716pi1grp 23654 . . 3 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐵 𝐾) → 𝑄 ∈ Grp)
1810, 15, 17syl2anc 586 . 2 (𝜑𝑄 ∈ Grp)
19 pi1co.v . . . 4 𝑉 = (Base‘𝑃)
20 pi1co.g . . . 4 𝐺 = ran (𝑔 𝑉 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐹𝑔)]( ≃ph𝐾)⟩)
213, 16, 19, 20, 1, 6, 2, 11pi1cof 23663 . . 3 (𝜑𝐺:𝑉⟶(Base‘𝑄))
2219a1i 11 . . . . . . . 8 (𝜑𝑉 = (Base‘𝑃))
233, 1, 2, 22pi1bas2 23645 . . . . . . 7 (𝜑𝑉 = ( 𝑉 / ( ≃ph𝐽)))
2423eleq2d 2898 . . . . . 6 (𝜑 → (𝑦𝑉𝑦 ∈ ( 𝑉 / ( ≃ph𝐽))))
2524biimpa 479 . . . . 5 ((𝜑𝑦𝑉) → 𝑦 ∈ ( 𝑉 / ( ≃ph𝐽)))
26 eqid 2821 . . . . . 6 ( 𝑉 / ( ≃ph𝐽)) = ( 𝑉 / ( ≃ph𝐽))
27 fvoveq1 7179 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = (𝐺‘(𝑦(+g𝑃)𝑧)))
28 fveq2 6670 . . . . . . . . 9 ([𝑓]( ≃ph𝐽) = 𝑦 → (𝐺‘[𝑓]( ≃ph𝐽)) = (𝐺𝑦))
2928oveq1d 7171 . . . . . . . 8 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
3027, 29eqeq12d 2837 . . . . . . 7 ([𝑓]( ≃ph𝐽) = 𝑦 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
3130ralbidv 3197 . . . . . 6 ([𝑓]( ≃ph𝐽) = 𝑦 → (∀𝑧𝑉 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
32 oveq2 7164 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = ([𝑓]( ≃ph𝐽)(+g𝑃)𝑧))
3332fveq2d 6674 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)))
34 fveq2 6670 . . . . . . . . . . 11 ([]( ≃ph𝐽) = 𝑧 → (𝐺‘[]( ≃ph𝐽)) = (𝐺𝑧))
3534oveq2d 7172 . . . . . . . . . 10 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
3633, 35eqeq12d 2837 . . . . . . . . 9 ([]( ≃ph𝐽) = 𝑧 → ((𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) ↔ (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧))))
373, 1, 2, 22pi1eluni 23646 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑓 𝑉 ↔ (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐴)))
3837biimpa 479 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓 ∈ (II Cn 𝐽) ∧ (𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐴))
3938simp1d 1138 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → 𝑓 ∈ (II Cn 𝐽))
4039adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑓 ∈ (II Cn 𝐽))
411adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝐽 ∈ (TopOn‘𝑋))
422adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝐴𝑋)
4319a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝑉 = (Base‘𝑃))
443, 41, 42, 43pi1eluni 23646 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ( 𝑉 ↔ ( ∈ (II Cn 𝐽) ∧ (‘0) = 𝐴 ∧ (‘1) = 𝐴)))
4544biimpa 479 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ( ∈ (II Cn 𝐽) ∧ (‘0) = 𝐴 ∧ (‘1) = 𝐴))
4645simp1d 1138 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ∈ (II Cn 𝐽))
4738simp3d 1140 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓‘1) = 𝐴)
4847adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘1) = 𝐴)
4945simp2d 1139 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (‘0) = 𝐴)
5048, 49eqtr4d 2859 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘1) = (‘0))
516ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐹 ∈ (𝐽 Cn 𝐾))
5240, 46, 50, 51copco 23622 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹 ∘ (𝑓(*𝑝𝐽))) = ((𝐹𝑓)(*𝑝𝐾)(𝐹)))
5352eceq1d 8328 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾) = [((𝐹𝑓)(*𝑝𝐾)(𝐹))]( ≃ph𝐾))
5440, 46, 50pcocn 23621 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽))
5540, 46pco0 23618 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘0) = (𝑓‘0))
5638simp2d 1139 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝑓‘0) = 𝐴)
5756adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓‘0) = 𝐴)
5855, 57eqtrd 2856 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘0) = 𝐴)
5940, 46pco1 23619 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘1) = (‘1))
6045simp3d 1140 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (‘1) = 𝐴)
6159, 60eqtrd 2856 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽))‘1) = 𝐴)
621ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐽 ∈ (TopOn‘𝑋))
632ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐴𝑋)
6419a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑉 = (Base‘𝑃))
653, 62, 63, 64pi1eluni 23646 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝑓(*𝑝𝐽)) ∈ 𝑉 ↔ ((𝑓(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ ((𝑓(*𝑝𝐽))‘0) = 𝐴 ∧ ((𝑓(*𝑝𝐽))‘1) = 𝐴)))
6654, 58, 61, 65mpbir3and 1338 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝑓(*𝑝𝐽)) ∈ 𝑉)
673, 16, 19, 20, 1, 6, 2, 11pi1coval 23664 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓(*𝑝𝐽)) ∈ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
6867adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ (𝑓(*𝑝𝐽)) ∈ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
6966, 68syldan 593 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = [(𝐹 ∘ (𝑓(*𝑝𝐽)))]( ≃ph𝐾))
70 eqid 2821 . . . . . . . . . . . 12 (Base‘𝑄) = (Base‘𝑄)
7110ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐾 ∈ (TopOn‘ 𝐾))
7215ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝐵 𝐾)
73 eqid 2821 . . . . . . . . . . . 12 (+g𝑄) = (+g𝑄)
746adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐹 ∈ (𝐽 Cn 𝐾))
75 cnco 21874 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹𝑓) ∈ (II Cn 𝐾))
7639, 74, 75syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → (𝐹𝑓) ∈ (II Cn 𝐾))
77 iitopon 23487 . . . . . . . . . . . . . . . . 17 II ∈ (TopOn‘(0[,]1))
78 cnf2 21857 . . . . . . . . . . . . . . . . 17 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (II Cn 𝐽)) → 𝑓:(0[,]1)⟶𝑋)
7977, 41, 39, 78mp3an2i 1462 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 𝑉) → 𝑓:(0[,]1)⟶𝑋)
80 0elunit 12856 . . . . . . . . . . . . . . . 16 0 ∈ (0[,]1)
81 fvco3 6760 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → ((𝐹𝑓)‘0) = (𝐹‘(𝑓‘0)))
8279, 80, 81sylancl 588 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘0) = (𝐹‘(𝑓‘0)))
8356fveq2d 6674 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹‘(𝑓‘0)) = (𝐹𝐴))
8411adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹𝐴) = 𝐵)
8582, 83, 843eqtrd 2860 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘0) = 𝐵)
86 1elunit 12857 . . . . . . . . . . . . . . . 16 1 ∈ (0[,]1)
87 fvco3 6760 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑓)‘1) = (𝐹‘(𝑓‘1)))
8879, 86, 87sylancl 588 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘1) = (𝐹‘(𝑓‘1)))
8947fveq2d 6674 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (𝐹‘(𝑓‘1)) = (𝐹𝐴))
9088, 89, 843eqtrd 2860 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓)‘1) = 𝐵)
9110adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐾 ∈ (TopOn‘ 𝐾))
9215adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → 𝐵 𝐾)
93 eqidd 2822 . . . . . . . . . . . . . . 15 ((𝜑𝑓 𝑉) → (Base‘𝑄) = (Base‘𝑄))
9416, 91, 92, 93pi1eluni 23646 . . . . . . . . . . . . . 14 ((𝜑𝑓 𝑉) → ((𝐹𝑓) ∈ (Base‘𝑄) ↔ ((𝐹𝑓) ∈ (II Cn 𝐾) ∧ ((𝐹𝑓)‘0) = 𝐵 ∧ ((𝐹𝑓)‘1) = 𝐵)))
9576, 85, 90, 94mpbir3and 1338 . . . . . . . . . . . . 13 ((𝜑𝑓 𝑉) → (𝐹𝑓) ∈ (Base‘𝑄))
9695adantr 483 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹𝑓) ∈ (Base‘𝑄))
97 cnco 21874 . . . . . . . . . . . . . 14 (( ∈ (II Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹) ∈ (II Cn 𝐾))
9846, 51, 97syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹) ∈ (II Cn 𝐾))
99 cnf2 21857 . . . . . . . . . . . . . . . 16 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ ∈ (II Cn 𝐽)) → :(0[,]1)⟶𝑋)
10077, 62, 46, 99mp3an2i 1462 . . . . . . . . . . . . . . 15 (((𝜑𝑓 𝑉) ∧ 𝑉) → :(0[,]1)⟶𝑋)
101 fvco3 6760 . . . . . . . . . . . . . . 15 ((:(0[,]1)⟶𝑋 ∧ 0 ∈ (0[,]1)) → ((𝐹)‘0) = (𝐹‘(‘0)))
102100, 80, 101sylancl 588 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘0) = (𝐹‘(‘0)))
10349fveq2d 6674 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹‘(‘0)) = (𝐹𝐴))
10411ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹𝐴) = 𝐵)
105102, 103, 1043eqtrd 2860 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘0) = 𝐵)
106 fvco3 6760 . . . . . . . . . . . . . . 15 ((:(0[,]1)⟶𝑋 ∧ 1 ∈ (0[,]1)) → ((𝐹)‘1) = (𝐹‘(‘1)))
107100, 86, 106sylancl 588 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘1) = (𝐹‘(‘1)))
10860fveq2d 6674 . . . . . . . . . . . . . 14 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹‘(‘1)) = (𝐹𝐴))
109107, 108, 1043eqtrd 2860 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹)‘1) = 𝐵)
110 eqidd 2822 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑄) = (Base‘𝑄))
11116, 10, 15, 110pi1eluni 23646 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹) ∈ (Base‘𝑄) ↔ ((𝐹) ∈ (II Cn 𝐾) ∧ ((𝐹)‘0) = 𝐵 ∧ ((𝐹)‘1) = 𝐵)))
112111ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐹) ∈ (Base‘𝑄) ↔ ((𝐹) ∈ (II Cn 𝐾) ∧ ((𝐹)‘0) = 𝐵 ∧ ((𝐹)‘1) = 𝐵)))
11398, 105, 109, 112mpbir3and 1338 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐹) ∈ (Base‘𝑄))
11416, 70, 71, 72, 73, 96, 113pi1addval 23652 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)) = [((𝐹𝑓)(*𝑝𝐾)(𝐹))]( ≃ph𝐾))
11553, 69, 1143eqtr4d 2866 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)) = ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)))
116 eqid 2821 . . . . . . . . . . . 12 (+g𝑃) = (+g𝑃)
117 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑓 𝑉)
118 simpr 487 . . . . . . . . . . . 12 (((𝜑𝑓 𝑉) ∧ 𝑉) → 𝑉)
1193, 19, 62, 63, 116, 117, 118pi1addval 23652 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → ([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽)) = [(𝑓(*𝑝𝐽))]( ≃ph𝐽))
120119fveq2d 6674 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = (𝐺‘[(𝑓(*𝑝𝐽))]( ≃ph𝐽)))
1213, 16, 19, 20, 1, 6, 2, 11pi1coval 23664 . . . . . . . . . . . 12 ((𝜑𝑓 𝑉) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐹𝑓)]( ≃ph𝐾))
122121adantr 483 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[𝑓]( ≃ph𝐽)) = [(𝐹𝑓)]( ≃ph𝐾))
1233, 16, 19, 20, 1, 6, 2, 11pi1coval 23664 . . . . . . . . . . . 12 ((𝜑 𝑉) → (𝐺‘[]( ≃ph𝐽)) = [(𝐹)]( ≃ph𝐾))
124123adantlr 713 . . . . . . . . . . 11 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘[]( ≃ph𝐽)) = [(𝐹)]( ≃ph𝐾))
125122, 124oveq12d 7174 . . . . . . . . . 10 (((𝜑𝑓 𝑉) ∧ 𝑉) → ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))) = ([(𝐹𝑓)]( ≃ph𝐾)(+g𝑄)[(𝐹)]( ≃ph𝐾)))
126115, 120, 1253eqtr4d 2866 . . . . . . . . 9 (((𝜑𝑓 𝑉) ∧ 𝑉) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)[]( ≃ph𝐽))) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺‘[]( ≃ph𝐽))))
12726, 36, 126ectocld 8364 . . . . . . . 8 (((𝜑𝑓 𝑉) ∧ 𝑧 ∈ ( 𝑉 / ( ≃ph𝐽))) → (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
128127ralrimiva 3182 . . . . . . 7 ((𝜑𝑓 𝑉) → ∀𝑧 ∈ ( 𝑉 / ( ≃ph𝐽))(𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
12923adantr 483 . . . . . . . 8 ((𝜑𝑓 𝑉) → 𝑉 = ( 𝑉 / ( ≃ph𝐽)))
130129raleqdv 3415 . . . . . . 7 ((𝜑𝑓 𝑉) → (∀𝑧𝑉 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)) ↔ ∀𝑧 ∈ ( 𝑉 / ( ≃ph𝐽))(𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧))))
131128, 130mpbird 259 . . . . . 6 ((𝜑𝑓 𝑉) → ∀𝑧𝑉 (𝐺‘([𝑓]( ≃ph𝐽)(+g𝑃)𝑧)) = ((𝐺‘[𝑓]( ≃ph𝐽))(+g𝑄)(𝐺𝑧)))
13226, 31, 131ectocld 8364 . . . . 5 ((𝜑𝑦 ∈ ( 𝑉 / ( ≃ph𝐽))) → ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
13325, 132syldan 593 . . . 4 ((𝜑𝑦𝑉) → ∀𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
134133ralrimiva 3182 . . 3 (𝜑 → ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))
13521, 134jca 514 . 2 (𝜑 → (𝐺:𝑉⟶(Base‘𝑄) ∧ ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧))))
13619, 70, 116, 73isghm 18358 . 2 (𝐺 ∈ (𝑃 GrpHom 𝑄) ↔ ((𝑃 ∈ Grp ∧ 𝑄 ∈ Grp) ∧ (𝐺:𝑉⟶(Base‘𝑄) ∧ ∀𝑦𝑉𝑧𝑉 (𝐺‘(𝑦(+g𝑃)𝑧)) = ((𝐺𝑦)(+g𝑄)(𝐺𝑧)))))
1375, 18, 135, 136syl21anbrc 1340 1 (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cop 4573   cuni 4838  cmpt 5146  ran crn 5556  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  [cec 8287   / cqs 8288  0cc0 10537  1c1 10538  [,]cicc 12742  Basecbs 16483  +gcplusg 16565  Grpcgrp 18103   GrpHom cghm 18355  Topctop 21501  TopOnctopon 21518   Cn ccn 21832  IIcii 23483  phcphtpc 23573  *𝑝cpco 23604   π1 cpi1 23607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-qus 16782  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-mulg 18225  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-cn 21835  df-cnp 21836  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932  df-ii 23485  df-htpy 23574  df-phtpy 23575  df-phtpc 23596  df-pco 23609  df-om1 23610  df-pi1 23612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator