![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expghm | Structured version Visualization version GIF version |
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
expghm.m | ⊢ 𝑀 = (mulGrp‘ℂfld) |
expghm.u | ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) |
Ref | Expression |
---|---|
expghm | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expclzlem 13074 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ (ℂ ∖ {0})) | |
2 | 1 | 3expa 1112 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ (ℂ ∖ {0})) |
3 | eqid 2756 | . . 3 ⊢ (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) = (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) | |
4 | 2, 3 | fmptd 6544 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0})) |
5 | expaddz 13094 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) | |
6 | zaddcl 11605 | . . . . . 6 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦 + 𝑧) ∈ ℤ) | |
7 | 6 | adantl 473 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ) |
8 | oveq2 6817 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 𝑧) → (𝐴↑𝑥) = (𝐴↑(𝑦 + 𝑧))) | |
9 | ovex 6837 | . . . . . 6 ⊢ (𝐴↑(𝑦 + 𝑧)) ∈ V | |
10 | 8, 3, 9 | fvmpt 6440 | . . . . 5 ⊢ ((𝑦 + 𝑧) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧))) |
11 | 7, 10 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧))) |
12 | oveq2 6817 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) | |
13 | ovex 6837 | . . . . . . 7 ⊢ (𝐴↑𝑦) ∈ V | |
14 | 12, 3, 13 | fvmpt 6440 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) = (𝐴↑𝑦)) |
15 | oveq2 6817 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝐴↑𝑥) = (𝐴↑𝑧)) | |
16 | ovex 6837 | . . . . . . 7 ⊢ (𝐴↑𝑧) ∈ V | |
17 | 15, 3, 16 | fvmpt 6440 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧) = (𝐴↑𝑧)) |
18 | 14, 17 | oveqan12d 6828 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) |
19 | 18 | adantl 473 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)) = ((𝐴↑𝑦) · (𝐴↑𝑧))) |
20 | 5, 11, 19 | 3eqtr4d 2800 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))) |
21 | 20 | ralrimivva 3105 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))) |
22 | zringgrp 20021 | . . . 4 ⊢ ℤring ∈ Grp | |
23 | cnring 19966 | . . . . 5 ⊢ ℂfld ∈ Ring | |
24 | cnfldbas 19948 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
25 | cnfld0 19968 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
26 | cndrng 19973 | . . . . . . 7 ⊢ ℂfld ∈ DivRing | |
27 | 24, 25, 26 | drngui 18951 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
28 | expghm.u | . . . . . . 7 ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) | |
29 | expghm.m | . . . . . . . 8 ⊢ 𝑀 = (mulGrp‘ℂfld) | |
30 | 29 | oveq1i 6819 | . . . . . . 7 ⊢ (𝑀 ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
31 | 28, 30 | eqtri 2778 | . . . . . 6 ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
32 | 27, 31 | unitgrp 18863 | . . . . 5 ⊢ (ℂfld ∈ Ring → 𝑈 ∈ Grp) |
33 | 23, 32 | ax-mp 5 | . . . 4 ⊢ 𝑈 ∈ Grp |
34 | 22, 33 | pm3.2i 470 | . . 3 ⊢ (ℤring ∈ Grp ∧ 𝑈 ∈ Grp) |
35 | zringbas 20022 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
36 | difss 3876 | . . . . 5 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
37 | 29, 24 | mgpbas 18691 | . . . . . 6 ⊢ ℂ = (Base‘𝑀) |
38 | 28, 37 | ressbas2 16129 | . . . . 5 ⊢ ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑈)) |
39 | 36, 38 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) = (Base‘𝑈) |
40 | zringplusg 20023 | . . . 4 ⊢ + = (+g‘ℤring) | |
41 | fvex 6358 | . . . . . 6 ⊢ (Unit‘ℂfld) ∈ V | |
42 | 27, 41 | eqeltri 2831 | . . . . 5 ⊢ (ℂ ∖ {0}) ∈ V |
43 | cnfldmul 19950 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
44 | 29, 43 | mgpplusg 18689 | . . . . . 6 ⊢ · = (+g‘𝑀) |
45 | 28, 44 | ressplusg 16191 | . . . . 5 ⊢ ((ℂ ∖ {0}) ∈ V → · = (+g‘𝑈)) |
46 | 42, 45 | ax-mp 5 | . . . 4 ⊢ · = (+g‘𝑈) |
47 | 35, 39, 40, 46 | isghm 17857 | . . 3 ⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((ℤring ∈ Grp ∧ 𝑈 ∈ Grp) ∧ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧))))) |
48 | 34, 47 | mpbiran 991 | . 2 ⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑧)))) |
49 | 4, 21, 48 | sylanbrc 701 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1628 ∈ wcel 2135 ≠ wne 2928 ∀wral 3046 Vcvv 3336 ∖ cdif 3708 ⊆ wss 3711 {csn 4317 ↦ cmpt 4877 ⟶wf 6041 ‘cfv 6045 (class class class)co 6809 ℂcc 10122 0cc0 10124 + caddc 10127 · cmul 10129 ℤcz 11565 ↑cexp 13050 Basecbs 16055 ↾s cress 16056 +gcplusg 16139 Grpcgrp 17619 GrpHom cghm 17854 mulGrpcmgp 18685 Ringcrg 18743 Unitcui 18835 ℂfldccnfld 19944 ℤringzring 20016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 ax-addf 10203 ax-mulf 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-tpos 7517 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-oadd 7729 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-div 10873 df-nn 11209 df-2 11267 df-3 11268 df-4 11269 df-5 11270 df-6 11271 df-7 11272 df-8 11273 df-9 11274 df-n0 11481 df-z 11566 df-dec 11682 df-uz 11876 df-fz 12516 df-seq 12992 df-exp 13051 df-struct 16057 df-ndx 16058 df-slot 16059 df-base 16061 df-sets 16062 df-ress 16063 df-plusg 16152 df-mulr 16153 df-starv 16154 df-tset 16158 df-ple 16159 df-ds 16162 df-unif 16163 df-0g 16300 df-mgm 17439 df-sgrp 17481 df-mnd 17492 df-grp 17622 df-minusg 17623 df-subg 17788 df-ghm 17855 df-cmn 18391 df-mgp 18686 df-ur 18698 df-ring 18745 df-cring 18746 df-oppr 18819 df-dvdsr 18837 df-unit 18838 df-invr 18868 df-dvr 18879 df-drng 18947 df-subrg 18976 df-cnfld 19945 df-zring 20017 |
This theorem is referenced by: lgseisenlem4 25298 |
Copyright terms: Public domain | W3C validator |