MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expghm Structured version   Visualization version   GIF version

Theorem expghm 20643
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
expghm.m 𝑀 = (mulGrp‘ℂfld)
expghm.u 𝑈 = (𝑀s (ℂ ∖ {0}))
Assertion
Ref Expression
expghm ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑈(𝑥)   𝑀(𝑥)

Proof of Theorem expghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expclzlem 13454 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ (ℂ ∖ {0}))
213expa 1114 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ (ℂ ∖ {0}))
32fmpttd 6879 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}))
4 expaddz 13474 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝐴↑(𝑦 + 𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
5 zaddcl 12023 . . . . . 6 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦 + 𝑧) ∈ ℤ)
65adantl 484 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 + 𝑧) ∈ ℤ)
7 oveq2 7164 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝐴𝑥) = (𝐴↑(𝑦 + 𝑧)))
8 eqid 2821 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝐴𝑥)) = (𝑥 ∈ ℤ ↦ (𝐴𝑥))
9 ovex 7189 . . . . . 6 (𝐴↑(𝑦 + 𝑧)) ∈ V
107, 8, 9fvmpt 6768 . . . . 5 ((𝑦 + 𝑧) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
116, 10syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (𝐴↑(𝑦 + 𝑧)))
12 oveq2 7164 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
13 ovex 7189 . . . . . . 7 (𝐴𝑦) ∈ V
1412, 8, 13fvmpt 6768 . . . . . 6 (𝑦 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) = (𝐴𝑦))
15 oveq2 7164 . . . . . . 7 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
16 ovex 7189 . . . . . . 7 (𝐴𝑧) ∈ V
1715, 8, 16fvmpt 6768 . . . . . 6 (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧) = (𝐴𝑧))
1814, 17oveqan12d 7175 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
1918adantl 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)) = ((𝐴𝑦) · (𝐴𝑧)))
204, 11, 193eqtr4d 2866 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))
2120ralrimivva 3191 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))
22 zringgrp 20622 . . . 4 ring ∈ Grp
23 cnring 20567 . . . . 5 fld ∈ Ring
24 cnfldbas 20549 . . . . . . 7 ℂ = (Base‘ℂfld)
25 cnfld0 20569 . . . . . . 7 0 = (0g‘ℂfld)
26 cndrng 20574 . . . . . . 7 fld ∈ DivRing
2724, 25, 26drngui 19508 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
28 expghm.u . . . . . . 7 𝑈 = (𝑀s (ℂ ∖ {0}))
29 expghm.m . . . . . . . 8 𝑀 = (mulGrp‘ℂfld)
3029oveq1i 7166 . . . . . . 7 (𝑀s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3128, 30eqtri 2844 . . . . . 6 𝑈 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
3227, 31unitgrp 19417 . . . . 5 (ℂfld ∈ Ring → 𝑈 ∈ Grp)
3323, 32ax-mp 5 . . . 4 𝑈 ∈ Grp
3422, 33pm3.2i 473 . . 3 (ℤring ∈ Grp ∧ 𝑈 ∈ Grp)
35 zringbas 20623 . . . 4 ℤ = (Base‘ℤring)
36 difss 4108 . . . . 5 (ℂ ∖ {0}) ⊆ ℂ
3729, 24mgpbas 19245 . . . . . 6 ℂ = (Base‘𝑀)
3828, 37ressbas2 16555 . . . . 5 ((ℂ ∖ {0}) ⊆ ℂ → (ℂ ∖ {0}) = (Base‘𝑈))
3936, 38ax-mp 5 . . . 4 (ℂ ∖ {0}) = (Base‘𝑈)
40 zringplusg 20624 . . . 4 + = (+g‘ℤring)
4127fvexi 6684 . . . . 5 (ℂ ∖ {0}) ∈ V
42 cnfldmul 20551 . . . . . . 7 · = (.r‘ℂfld)
4329, 42mgpplusg 19243 . . . . . 6 · = (+g𝑀)
4428, 43ressplusg 16612 . . . . 5 ((ℂ ∖ {0}) ∈ V → · = (+g𝑈))
4541, 44ax-mp 5 . . . 4 · = (+g𝑈)
4635, 39, 40, 45isghm 18358 . . 3 ((𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((ℤring ∈ Grp ∧ 𝑈 ∈ Grp) ∧ ((𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧)))))
4734, 46mpbiran 707 . 2 ((𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶(ℂ ∖ {0}) ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑦 + 𝑧)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑦) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑧))))
483, 21, 47sylanbrc 585 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  cdif 3933  wss 3936  {csn 4567  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537   + caddc 10540   · cmul 10542  cz 11982  cexp 13430  Basecbs 16483  s cress 16484  +gcplusg 16565  Grpcgrp 18103   GrpHom cghm 18355  mulGrpcmgp 19239  Ringcrg 19297  Unitcui 19389  fldccnfld 20545  ringzring 20617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-seq 13371  df-exp 13431  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276  df-ghm 18356  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-subrg 19533  df-cnfld 20546  df-zring 20618
This theorem is referenced by:  lgseisenlem4  25954
  Copyright terms: Public domain W3C validator