Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismeas Structured version   Visualization version   GIF version

Theorem ismeas 30067
Description: The property of being a measure. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 19-Oct-2016.)
Assertion
Ref Expression
ismeas (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑆
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem ismeas
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3201 . . 3 (𝑀 ∈ (measures‘𝑆) → 𝑀 ∈ V)
21a1i 11 . 2 (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) → 𝑀 ∈ V))
3 simp1 1059 . . 3 ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))) → 𝑀:𝑆⟶(0[,]+∞))
4 ovex 6638 . . . 4 (0[,]+∞) ∈ V
5 fex2 7075 . . . . . 6 ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V) → 𝑀 ∈ V)
653expb 1263 . . . . 5 ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V)) → 𝑀 ∈ V)
76expcom 451 . . . 4 ((𝑆 ran sigAlgebra ∧ (0[,]+∞) ∈ V) → (𝑀:𝑆⟶(0[,]+∞) → 𝑀 ∈ V))
84, 7mpan2 706 . . 3 (𝑆 ran sigAlgebra → (𝑀:𝑆⟶(0[,]+∞) → 𝑀 ∈ V))
93, 8syl5 34 . 2 (𝑆 ran sigAlgebra → ((𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))) → 𝑀 ∈ V))
10 df-meas 30064 . . . 4 measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
11 vex 3192 . . . . . 6 𝑠 ∈ V
12 mapex 7815 . . . . . 6 ((𝑠 ∈ V ∧ (0[,]+∞) ∈ V) → {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V)
1311, 4, 12mp2an 707 . . . . 5 {𝑚𝑚:𝑠⟶(0[,]+∞)} ∈ V
14 simp1 1059 . . . . . 6 ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) → 𝑚:𝑠⟶(0[,]+∞))
1514ss2abi 3658 . . . . 5 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ⊆ {𝑚𝑚:𝑠⟶(0[,]+∞)}
1613, 15ssexi 4768 . . . 4 {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))} ∈ V
17 simpr 477 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑚 = 𝑀)
18 simpl 473 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑠 = 𝑆)
1917, 18feq12d 5995 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (𝑚:𝑠⟶(0[,]+∞) ↔ 𝑀:𝑆⟶(0[,]+∞)))
20 fveq1 6152 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘∅) = (𝑀‘∅))
2120eqeq1d 2623 . . . . . 6 (𝑚 = 𝑀 → ((𝑚‘∅) = 0 ↔ (𝑀‘∅) = 0))
2221adantl 482 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑚‘∅) = 0 ↔ (𝑀‘∅) = 0))
2318pweqd 4140 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝒫 𝑠 = 𝒫 𝑆)
24 fveq1 6152 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑚 𝑥) = (𝑀 𝑥))
25 fveq1 6152 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚𝑦) = (𝑀𝑦))
2625esumeq2sdv 29906 . . . . . . . . 9 (𝑚 = 𝑀 → Σ*𝑦𝑥(𝑚𝑦) = Σ*𝑦𝑥(𝑀𝑦))
2724, 26eqeq12d 2636 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦) ↔ (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))
2827imbi2d 330 . . . . . . 7 (𝑚 = 𝑀 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
2928adantl 482 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
3023, 29raleqbidv 3144 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
3119, 22, 303anbi123d 1396 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦))) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
3210, 16, 31abfmpel 29320 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑀 ∈ V) → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
3332ex 450 . 2 (𝑆 ran sigAlgebra → (𝑀 ∈ V → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))))
342, 9, 33pm5.21ndd 369 1 (𝑆 ran sigAlgebra → (𝑀 ∈ (measures‘𝑆) ↔ (𝑀:𝑆⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  {cab 2607  wral 2907  Vcvv 3189  c0 3896  𝒫 cpw 4135   cuni 4407  Disj wdisj 4588   class class class wbr 4618  ran crn 5080  wf 5848  cfv 5852  (class class class)co 6610  ωcom 7019  cdom 7905  0cc0 9888  +∞cpnf 10023  [,]cicc 12128  Σ*cesum 29894  sigAlgebracsiga 29975  measurescmeas 30063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860  df-ov 6613  df-esum 29895  df-meas 30064
This theorem is referenced by:  measbasedom  30070  measfrge0  30071  measvnul  30074  measvun  30077  measinb  30089  measres  30090  measdivcstOLD  30092  measdivcst  30093  cntmeas  30094  volmeas  30099  ddemeas  30104  omsmeas  30190  dstrvprob  30338
  Copyright terms: Public domain W3C validator