Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenidm Structured version   Visualization version   GIF version

Theorem kgenidm 21344
 Description: The compact generator is idempotent on compactly generated spaces. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenidm (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)

Proof of Theorem kgenidm
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kgenf 21338 . . . 4 𝑘Gen:Top⟶Top
2 ffn 6043 . . . 4 (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top)
3 fvelrnb 6241 . . . 4 (𝑘Gen Fn Top → (𝐽 ∈ ran 𝑘Gen ↔ ∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽))
41, 2, 3mp2b 10 . . 3 (𝐽 ∈ ran 𝑘Gen ↔ ∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽)
5 eqid 2621 . . . . . . . . . . . 12 𝑗 = 𝑗
65toptopon 20716 . . . . . . . . . . 11 (𝑗 ∈ Top ↔ 𝑗 ∈ (TopOn‘ 𝑗))
7 kgentopon 21335 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘ 𝑗) → (𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗))
86, 7sylbi 207 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗))
9 kgentopon 21335 . . . . . . . . . 10 ((𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗) → (𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗))
108, 9syl 17 . . . . . . . . 9 (𝑗 ∈ Top → (𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗))
11 toponss 20725 . . . . . . . . 9 (((𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗) ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 𝑗)
1210, 11sylan 488 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 𝑗)
13 simplr 792 . . . . . . . . . . . 12 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)))
14 kgencmp2 21343 . . . . . . . . . . . . . 14 (𝑗 ∈ Top → ((𝑗t 𝑘) ∈ Comp ↔ ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp))
1514biimpa 501 . . . . . . . . . . . . 13 ((𝑗 ∈ Top ∧ (𝑗t 𝑘) ∈ Comp) → ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp)
1615ad2ant2rl 785 . . . . . . . . . . . 12 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp)
17 kgeni 21334 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)) ∧ ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp) → (𝑥𝑘) ∈ ((𝑘Gen‘𝑗) ↾t 𝑘))
1813, 16, 17syl2anc 693 . . . . . . . . . . 11 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ ((𝑘Gen‘𝑗) ↾t 𝑘))
19 kgencmp 21342 . . . . . . . . . . . 12 ((𝑗 ∈ Top ∧ (𝑗t 𝑘) ∈ Comp) → (𝑗t 𝑘) = ((𝑘Gen‘𝑗) ↾t 𝑘))
2019ad2ant2rl 785 . . . . . . . . . . 11 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑗t 𝑘) = ((𝑘Gen‘𝑗) ↾t 𝑘))
2118, 20eleqtrrd 2703 . . . . . . . . . 10 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ (𝑗t 𝑘))
2221expr 643 . . . . . . . . 9 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ 𝑘 ∈ 𝒫 𝑗) → ((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))
2322ralrimiva 2965 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))
24 simpl 473 . . . . . . . . . 10 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑗 ∈ Top)
2524, 6sylib 208 . . . . . . . . 9 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑗 ∈ (TopOn‘ 𝑗))
26 elkgen 21333 . . . . . . . . 9 (𝑗 ∈ (TopOn‘ 𝑗) → (𝑥 ∈ (𝑘Gen‘𝑗) ↔ (𝑥 𝑗 ∧ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))))
2725, 26syl 17 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → (𝑥 ∈ (𝑘Gen‘𝑗) ↔ (𝑥 𝑗 ∧ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))))
2812, 23, 27mpbir2and 957 . . . . . . 7 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 ∈ (𝑘Gen‘𝑗))
2928ex 450 . . . . . 6 (𝑗 ∈ Top → (𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)) → 𝑥 ∈ (𝑘Gen‘𝑗)))
3029ssrdv 3607 . . . . 5 (𝑗 ∈ Top → (𝑘Gen‘(𝑘Gen‘𝑗)) ⊆ (𝑘Gen‘𝑗))
31 fveq2 6189 . . . . . 6 ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘(𝑘Gen‘𝑗)) = (𝑘Gen‘𝐽))
32 id 22 . . . . . 6 ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝑗) = 𝐽)
3331, 32sseq12d 3632 . . . . 5 ((𝑘Gen‘𝑗) = 𝐽 → ((𝑘Gen‘(𝑘Gen‘𝑗)) ⊆ (𝑘Gen‘𝑗) ↔ (𝑘Gen‘𝐽) ⊆ 𝐽))
3430, 33syl5ibcom 235 . . . 4 (𝑗 ∈ Top → ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽))
3534rexlimiv 3025 . . 3 (∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽)
364, 35sylbi 207 . 2 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) ⊆ 𝐽)
37 kgentop 21339 . . 3 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
38 kgenss 21340 . . 3 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
3937, 38syl 17 . 2 (𝐽 ∈ ran 𝑘Gen → 𝐽 ⊆ (𝑘Gen‘𝐽))
4036, 39eqssd 3618 1 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1482   ∈ wcel 1989  ∀wral 2911  ∃wrex 2912   ∩ cin 3571   ⊆ wss 3572  𝒫 cpw 4156  ∪ cuni 4434  ran crn 5113   Fn wfn 5881  ⟶wf 5882  ‘cfv 5886  (class class class)co 6647   ↾t crest 16075  Topctop 20692  TopOnctopon 20709  Compccmp 21183  𝑘Genckgen 21330 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-oadd 7561  df-er 7739  df-en 7953  df-fin 7956  df-fi 8314  df-rest 16077  df-topgen 16098  df-top 20693  df-topon 20710  df-bases 20744  df-cmp 21184  df-kgen 21331 This theorem is referenced by:  iskgen2  21345  kgencn3  21355  txkgen  21449
 Copyright terms: Public domain W3C validator