MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgencn3 Structured version   Visualization version   GIF version

Theorem kgencn3 22168
Description: The set of continuous functions from 𝐽 to 𝐾 is unaffected by k-ification of 𝐾, if 𝐽 is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgencn3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = (𝐽 Cn (𝑘Gen‘𝐾)))

Proof of Theorem kgencn3
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . . . . 7 𝐽 = 𝐽
2 eqid 2823 . . . . . . 7 𝐾 = 𝐾
31, 2cnf 21856 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓: 𝐽 𝐾)
43adantl 484 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓: 𝐽 𝐾)
5 cnvimass 5951 . . . . . . . . 9 (𝑓𝑥) ⊆ dom 𝑓
64fdmd 6525 . . . . . . . . . 10 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → dom 𝑓 = 𝐽)
76adantr 483 . . . . . . . . 9 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → dom 𝑓 = 𝐽)
85, 7sseqtrid 4021 . . . . . . . 8 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑓𝑥) ⊆ 𝐽)
9 cnvresima 6089 . . . . . . . . . . . 12 ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓 “ (𝑥 ∩ (𝑓𝑦))) ∩ 𝑦)
104ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑓: 𝐽 𝐾)
11 ffun 6519 . . . . . . . . . . . . . . 15 (𝑓: 𝐽 𝐾 → Fun 𝑓)
12 inpreima 6836 . . . . . . . . . . . . . . 15 (Fun 𝑓 → (𝑓 “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))))
1310, 11, 123syl 18 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓 “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))))
1413ineq1d 4190 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓 “ (𝑥 ∩ (𝑓𝑦))) ∩ 𝑦) = (((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))) ∩ 𝑦))
15 in32 4200 . . . . . . . . . . . . . 14 (((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))) ∩ 𝑦) = (((𝑓𝑥) ∩ 𝑦) ∩ (𝑓 “ (𝑓𝑦)))
16 ssrin 4212 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑥) ⊆ dom 𝑓 → ((𝑓𝑥) ∩ 𝑦) ⊆ (dom 𝑓𝑦))
175, 16ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥) ∩ 𝑦) ⊆ (dom 𝑓𝑦)
18 dminss 6012 . . . . . . . . . . . . . . . . 17 (dom 𝑓𝑦) ⊆ (𝑓 “ (𝑓𝑦))
1917, 18sstri 3978 . . . . . . . . . . . . . . . 16 ((𝑓𝑥) ∩ 𝑦) ⊆ (𝑓 “ (𝑓𝑦))
2019a1i 11 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑥) ∩ 𝑦) ⊆ (𝑓 “ (𝑓𝑦)))
21 df-ss 3954 . . . . . . . . . . . . . . 15 (((𝑓𝑥) ∩ 𝑦) ⊆ (𝑓 “ (𝑓𝑦)) ↔ (((𝑓𝑥) ∩ 𝑦) ∩ (𝑓 “ (𝑓𝑦))) = ((𝑓𝑥) ∩ 𝑦))
2220, 21sylib 220 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (((𝑓𝑥) ∩ 𝑦) ∩ (𝑓 “ (𝑓𝑦))) = ((𝑓𝑥) ∩ 𝑦))
2315, 22syl5eq 2870 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (((𝑓𝑥) ∩ (𝑓 “ (𝑓𝑦))) ∩ 𝑦) = ((𝑓𝑥) ∩ 𝑦))
2414, 23eqtrd 2858 . . . . . . . . . . . 12 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓 “ (𝑥 ∩ (𝑓𝑦))) ∩ 𝑦) = ((𝑓𝑥) ∩ 𝑦))
259, 24syl5eq 2870 . . . . . . . . . . 11 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) = ((𝑓𝑥) ∩ 𝑦))
26 simpr 487 . . . . . . . . . . . . . . 15 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾))
2726ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑓 ∈ (𝐽 Cn 𝐾))
28 elpwi 4550 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝒫 𝐽𝑦 𝐽)
2928ad2antrl 726 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑦 𝐽)
301cnrest 21895 . . . . . . . . . . . . . 14 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 𝐽) → (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾))
3127, 29, 30syl2anc 586 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾))
32 simpr 487 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → 𝐾 ∈ Top)
3332ad3antrrr 728 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝐾 ∈ Top)
34 toptopon2 21528 . . . . . . . . . . . . . . 15 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3533, 34sylib 220 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝐾 ∈ (TopOn‘ 𝐾))
36 df-ima 5570 . . . . . . . . . . . . . . . 16 (𝑓𝑦) = ran (𝑓𝑦)
3736eqimss2i 4028 . . . . . . . . . . . . . . 15 ran (𝑓𝑦) ⊆ (𝑓𝑦)
3837a1i 11 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ran (𝑓𝑦) ⊆ (𝑓𝑦))
39 imassrn 5942 . . . . . . . . . . . . . . 15 (𝑓𝑦) ⊆ ran 𝑓
4010frnd 6523 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ran 𝑓 𝐾)
4139, 40sstrid 3980 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓𝑦) ⊆ 𝐾)
42 cnrest2 21896 . . . . . . . . . . . . . 14 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran (𝑓𝑦) ⊆ (𝑓𝑦) ∧ (𝑓𝑦) ⊆ 𝐾) → ((𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾) ↔ (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦)))))
4335, 38, 41, 42syl3anc 1367 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑦) ∈ ((𝐽t 𝑦) Cn 𝐾) ↔ (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦)))))
4431, 43mpbid 234 . . . . . . . . . . . 12 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦))))
45 simplr 767 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘𝐾))
46 simprr 771 . . . . . . . . . . . . . 14 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝐽t 𝑦) ∈ Comp)
47 imacmp 22007 . . . . . . . . . . . . . 14 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ (𝐽t 𝑦) ∈ Comp) → (𝐾t (𝑓𝑦)) ∈ Comp)
4827, 46, 47syl2anc 586 . . . . . . . . . . . . 13 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝐾t (𝑓𝑦)) ∈ Comp)
49 kgeni 22147 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑘Gen‘𝐾) ∧ (𝐾t (𝑓𝑦)) ∈ Comp) → (𝑥 ∩ (𝑓𝑦)) ∈ (𝐾t (𝑓𝑦)))
5045, 48, 49syl2anc 586 . . . . . . . . . . . 12 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → (𝑥 ∩ (𝑓𝑦)) ∈ (𝐾t (𝑓𝑦)))
51 cnima 21875 . . . . . . . . . . . 12 (((𝑓𝑦) ∈ ((𝐽t 𝑦) Cn (𝐾t (𝑓𝑦))) ∧ (𝑥 ∩ (𝑓𝑦)) ∈ (𝐾t (𝑓𝑦))) → ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) ∈ (𝐽t 𝑦))
5244, 50, 51syl2anc 586 . . . . . . . . . . 11 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑦) “ (𝑥 ∩ (𝑓𝑦))) ∈ (𝐽t 𝑦))
5325, 52eqeltrrd 2916 . . . . . . . . . 10 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ (𝑦 ∈ 𝒫 𝐽 ∧ (𝐽t 𝑦) ∈ Comp)) → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦))
5453expr 459 . . . . . . . . 9 (((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) ∧ 𝑦 ∈ 𝒫 𝐽) → ((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))
5554ralrimiva 3184 . . . . . . . 8 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))
56 kgentop 22152 . . . . . . . . . . 11 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
5756ad3antrrr 728 . . . . . . . . . 10 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → 𝐽 ∈ Top)
58 toptopon2 21528 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
5957, 58sylib 220 . . . . . . . . 9 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → 𝐽 ∈ (TopOn‘ 𝐽))
60 elkgen 22146 . . . . . . . . 9 (𝐽 ∈ (TopOn‘ 𝐽) → ((𝑓𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝑓𝑥) ⊆ 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))))
6159, 60syl 17 . . . . . . . 8 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → ((𝑓𝑥) ∈ (𝑘Gen‘𝐽) ↔ ((𝑓𝑥) ⊆ 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → ((𝑓𝑥) ∩ 𝑦) ∈ (𝐽t 𝑦)))))
628, 55, 61mpbir2and 711 . . . . . . 7 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑓𝑥) ∈ (𝑘Gen‘𝐽))
63 kgenidm 22157 . . . . . . . 8 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)
6463ad3antrrr 728 . . . . . . 7 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑘Gen‘𝐽) = 𝐽)
6562, 64eleqtrd 2917 . . . . . 6 ((((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝑘Gen‘𝐾)) → (𝑓𝑥) ∈ 𝐽)
6665ralrimiva 3184 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)
6756, 58sylib 220 . . . . . . 7 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ (TopOn‘ 𝐽))
68 kgentopon 22148 . . . . . . . 8 (𝐾 ∈ (TopOn‘ 𝐾) → (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾))
6934, 68sylbi 219 . . . . . . 7 (𝐾 ∈ Top → (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾))
70 iscn 21845 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾)) → (𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)) ↔ (𝑓: 𝐽 𝐾 ∧ ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)))
7167, 69, 70syl2an 597 . . . . . 6 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)) ↔ (𝑓: 𝐽 𝐾 ∧ ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)))
7271adantr 483 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)) ↔ (𝑓: 𝐽 𝐾 ∧ ∀𝑥 ∈ (𝑘Gen‘𝐾)(𝑓𝑥) ∈ 𝐽)))
734, 66, 72mpbir2and 711 . . . 4 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾)))
7473ex 415 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ (𝐽 Cn (𝑘Gen‘𝐾))))
7574ssrdv 3975 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn (𝑘Gen‘𝐾)))
7669adantl 484 . . . 4 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾))
77 toponcom 21538 . . . 4 ((𝐾 ∈ Top ∧ (𝑘Gen‘𝐾) ∈ (TopOn‘ 𝐾)) → 𝐾 ∈ (TopOn‘ (𝑘Gen‘𝐾)))
7832, 76, 77syl2anc 586 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → 𝐾 ∈ (TopOn‘ (𝑘Gen‘𝐾)))
79 kgenss 22153 . . . 4 (𝐾 ∈ Top → 𝐾 ⊆ (𝑘Gen‘𝐾))
8079adantl 484 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → 𝐾 ⊆ (𝑘Gen‘𝐾))
81 eqid 2823 . . . 4 (𝑘Gen‘𝐾) = (𝑘Gen‘𝐾)
8281cnss2 21887 . . 3 ((𝐾 ∈ (TopOn‘ (𝑘Gen‘𝐾)) ∧ 𝐾 ⊆ (𝑘Gen‘𝐾)) → (𝐽 Cn (𝑘Gen‘𝐾)) ⊆ (𝐽 Cn 𝐾))
8378, 80, 82syl2anc 586 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn (𝑘Gen‘𝐾)) ⊆ (𝐽 Cn 𝐾))
8475, 83eqssd 3986 1 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = (𝐽 Cn (𝑘Gen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  cin 3937  wss 3938  𝒫 cpw 4541   cuni 4840  ccnv 5556  dom cdm 5557  ran crn 5558  cres 5559  cima 5560  Fun wfun 6351  wf 6353  cfv 6357  (class class class)co 7158  t crest 16696  Topctop 21503  TopOnctopon 21520   Cn ccn 21834  Compccmp 21996  𝑘Genckgen 22143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-fin 8515  df-fi 8877  df-rest 16698  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-cn 21837  df-cmp 21997  df-kgen 22144
This theorem is referenced by:  kgen2cn  22169  txkgen  22262  qtopkgen  22320
  Copyright terms: Public domain W3C validator