Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lncvrelatN Structured version   Visualization version   GIF version

Theorem lncvrelatN 36949
Description: A lattice element covered by a line is an atom. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lncvrelat.b 𝐵 = (Base‘𝐾)
lncvrelat.c 𝐶 = ( ⋖ ‘𝐾)
lncvrelat.a 𝐴 = (Atoms‘𝐾)
lncvrelat.n 𝑁 = (Lines‘𝐾)
lncvrelat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
lncvrelatN (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ ((𝑀𝑋) ∈ 𝑁𝑃𝐶𝑋)) → 𝑃𝐴)

Proof of Theorem lncvrelatN
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 36531 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1129 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → 𝐾 ∈ Lat)
3 eqid 2821 . . . . 5 (join‘𝐾) = (join‘𝐾)
4 lncvrelat.a . . . . 5 𝐴 = (Atoms‘𝐾)
5 lncvrelat.n . . . . 5 𝑁 = (Lines‘𝐾)
6 lncvrelat.m . . . . 5 𝑀 = (pmap‘𝐾)
73, 4, 5, 6isline2 36942 . . . 4 (𝐾 ∈ Lat → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)))))
82, 7syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → ((𝑀𝑋) ∈ 𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)))))
9 simpll1 1208 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝐾 ∈ HL)
10 simpll2 1209 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑋𝐵)
119, 1syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝐾 ∈ Lat)
12 simplrl 775 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑞𝐴)
13 lncvrelat.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
1413, 4atbase 36457 . . . . . . . . 9 (𝑞𝐴𝑞𝐵)
1512, 14syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑞𝐵)
16 simplrr 776 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑟𝐴)
1713, 4atbase 36457 . . . . . . . . 9 (𝑟𝐴𝑟𝐵)
1816, 17syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑟𝐵)
1913, 3latjcl 17644 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑞𝐵𝑟𝐵) → (𝑞(join‘𝐾)𝑟) ∈ 𝐵)
2011, 15, 18, 19syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑞(join‘𝐾)𝑟) ∈ 𝐵)
2113, 6pmap11 36930 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑞(join‘𝐾)𝑟) ∈ 𝐵) → ((𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)) ↔ 𝑋 = (𝑞(join‘𝐾)𝑟)))
229, 10, 20, 21syl3anc 1367 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → ((𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)) ↔ 𝑋 = (𝑞(join‘𝐾)𝑟)))
23 breq2 5056 . . . . . . . 8 (𝑋 = (𝑞(join‘𝐾)𝑟) → (𝑃𝐶𝑋𝑃𝐶(𝑞(join‘𝐾)𝑟)))
2423biimpd 231 . . . . . . 7 (𝑋 = (𝑞(join‘𝐾)𝑟) → (𝑃𝐶𝑋𝑃𝐶(𝑞(join‘𝐾)𝑟)))
259adantr 483 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝐾 ∈ HL)
26 simpll3 1210 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → 𝑃𝐵)
2726, 12, 163jca 1124 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑃𝐵𝑞𝐴𝑟𝐴))
2827adantr 483 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → (𝑃𝐵𝑞𝐴𝑟𝐴))
29 simplr 767 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝑞𝑟)
30 simpr 487 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝑃𝐶(𝑞(join‘𝐾)𝑟))
31 lncvrelat.c . . . . . . . . . 10 𝐶 = ( ⋖ ‘𝐾)
3213, 3, 31, 4cvrat2 36597 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐵𝑞𝐴𝑟𝐴) ∧ (𝑞𝑟𝑃𝐶(𝑞(join‘𝐾)𝑟))) → 𝑃𝐴)
3325, 28, 29, 30, 32syl112anc 1370 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) ∧ 𝑃𝐶(𝑞(join‘𝐾)𝑟)) → 𝑃𝐴)
3433ex 415 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑃𝐶(𝑞(join‘𝐾)𝑟) → 𝑃𝐴))
3524, 34syl9r 78 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → (𝑋 = (𝑞(join‘𝐾)𝑟) → (𝑃𝐶𝑋𝑃𝐴)))
3622, 35sylbid 242 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) ∧ 𝑞𝑟) → ((𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟)) → (𝑃𝐶𝑋𝑃𝐴)))
3736expimpd 456 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ (𝑞𝐴𝑟𝐴)) → ((𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟))) → (𝑃𝐶𝑋𝑃𝐴)))
3837rexlimdvva 3294 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → (∃𝑞𝐴𝑟𝐴 (𝑞𝑟 ∧ (𝑀𝑋) = (𝑀‘(𝑞(join‘𝐾)𝑟))) → (𝑃𝐶𝑋𝑃𝐴)))
398, 38sylbid 242 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) → ((𝑀𝑋) ∈ 𝑁 → (𝑃𝐶𝑋𝑃𝐴)))
4039imp32 421 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐵) ∧ ((𝑀𝑋) ∈ 𝑁𝑃𝐶𝑋)) → 𝑃𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139   class class class wbr 5052  cfv 6341  (class class class)co 7142  Basecbs 16466  joincjn 17537  Latclat 17638  ccvr 36430  Atomscatm 36431  HLchlt 36518  Linesclines 36662  pmapcpmap 36665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-proset 17521  df-poset 17539  df-plt 17551  df-lub 17567  df-glb 17568  df-join 17569  df-meet 17570  df-p0 17632  df-lat 17639  df-clat 17701  df-oposet 36344  df-ol 36346  df-oml 36347  df-covers 36434  df-ats 36435  df-atl 36466  df-cvlat 36490  df-hlat 36519  df-lines 36669  df-pmap 36672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator