MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1resb Structured version   Visualization version   GIF version

Theorem lo1resb 14494
Description: The restriction of a function to an unbounded-above interval is eventually upper bounded iff the original is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1resb.1 (𝜑𝐹:𝐴⟶ℝ)
lo1resb.2 (𝜑𝐴 ⊆ ℝ)
lo1resb.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
lo1resb (𝜑 → (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1)))

Proof of Theorem lo1resb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1res 14489 . 2 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1))
2 lo1resb.1 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ)
32feqmptd 6411 . . . . . 6 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
43reseq1d 5550 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐵[,)+∞)))
5 resmpt3 5608 . . . . 5 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥))
64, 5syl6eq 2810 . . . 4 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
76eleq1d 2824 . . 3 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1) ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1)))
8 inss1 3976 . . . . . 6 (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴
9 lo1resb.2 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
108, 9syl5ss 3755 . . . . 5 (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
118sseli 3740 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥𝐴)
12 ffvelrn 6520 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
132, 11, 12syl2an 495 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹𝑥) ∈ ℝ)
1410, 13ello1mpt 14451 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
15 elin 3939 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐵[,)+∞)))
1615imbi1i 338 . . . . . . . . 9 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ ((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
17 impexp 461 . . . . . . . . 9 (((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))))
1816, 17bitri 264 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))))
19 impexp 461 . . . . . . . . . 10 (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) → (𝐹𝑥) ≤ 𝑧) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
20 lo1resb.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
2120ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
229adantr 472 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2322sselda 3744 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
24 elicopnf 12462 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
2524baibd 986 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵𝑥))
2621, 23, 25syl2anc 696 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵𝑥))
2726anbi1d 743 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) ↔ (𝐵𝑥𝑦𝑥)))
28 simplrl 819 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
29 maxle 12215 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵𝑥𝑦𝑥)))
3021, 28, 23, 29syl3anc 1477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵𝑥𝑦𝑥)))
3127, 30bitr4d 271 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) ↔ if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥))
3231imbi1d 330 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) → (𝐹𝑥) ≤ 𝑧) ↔ (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
3319, 32syl5bbr 274 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
3433pm5.74da 725 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))) ↔ (𝑥𝐴 → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧))))
3518, 34syl5bb 272 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧))))
3635ralbidv2 3122 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) ↔ ∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
372adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐹:𝐴⟶ℝ)
38 simprl 811 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ)
3920adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐵 ∈ ℝ)
4038, 39ifcld 4275 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ)
41 simprr 813 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑧 ∈ ℝ)
42 ello12r 14447 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)) → 𝐹 ∈ ≤𝑂(1))
43423expia 1115 . . . . . . 7 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4437, 22, 40, 41, 43syl22anc 1478 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4536, 44sylbid 230 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4645rexlimdvva 3176 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4714, 46sylbid 230 . . 3 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1) → 𝐹 ∈ ≤𝑂(1)))
487, 47sylbid 230 . 2 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1) → 𝐹 ∈ ≤𝑂(1)))
491, 48impbid2 216 1 (𝜑 → (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2139  wral 3050  wrex 3051  cin 3714  wss 3715  ifcif 4230   class class class wbr 4804  cmpt 4881  cres 5268  wf 6045  cfv 6049  (class class class)co 6813  cr 10127  +∞cpnf 10263  cle 10267  [,)cico 12370  ≤𝑂(1)clo1 14417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-pre-lttri 10202  ax-pre-lttrn 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-ico 12374  df-lo1 14421
This theorem is referenced by:  lo1eq  14498
  Copyright terms: Public domain W3C validator