![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnnid | Structured version Visualization version GIF version |
Description: If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 𝑊 and not equal to its translation. (Contributed by NM, 24-May-2012.) |
Ref | Expression |
---|---|
ltrneq.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrneq.l | ⊢ ≤ = (le‘𝐾) |
ltrneq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrneq.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrneq.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnnid | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralinexa 3026 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) ↔ ¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) | |
2 | nne 2827 | . . . . . . . 8 ⊢ (¬ (𝐹‘𝑝) ≠ 𝑝 ↔ (𝐹‘𝑝) = 𝑝) | |
3 | 2 | biimpi 206 | . . . . . . 7 ⊢ (¬ (𝐹‘𝑝) ≠ 𝑝 → (𝐹‘𝑝) = 𝑝) |
4 | 3 | imim2i 16 | . . . . . 6 ⊢ ((¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) → (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
5 | 4 | ralimi 2981 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → ¬ (𝐹‘𝑝) ≠ 𝑝) → ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
6 | 1, 5 | sylbir 225 | . . . 4 ⊢ (¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
7 | ltrneq.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
8 | ltrneq.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
9 | ltrneq.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | ltrneq.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | ltrneq.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | 7, 8, 9, 10, 11 | ltrnid 35739 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵))) |
13 | 6, 12 | syl5ib 234 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (¬ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝) → 𝐹 = ( I ↾ 𝐵))) |
14 | 13 | necon1ad 2840 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝))) |
15 | 14 | 3impia 1280 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 class class class wbr 4685 I cid 5052 ↾ cres 5145 ‘cfv 5926 Basecbs 15904 lecple 15995 Atomscatm 34868 HLchlt 34955 LHypclh 35588 LTrncltrn 35705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-lat 17093 df-clat 17155 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-laut 35593 df-ldil 35708 df-ltrn 35709 |
This theorem is referenced by: trlnidat 35778 |
Copyright terms: Public domain | W3C validator |