MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubel Structured version   Visualization version   GIF version

Theorem lubel 17043
Description: An element of a set is less than or equal to the least upper bound of the set. (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
lublem.b 𝐵 = (Base‘𝐾)
lublem.l = (le‘𝐾)
lublem.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubel ((𝐾 ∈ CLat ∧ 𝑋𝑆𝑆𝐵) → 𝑋 (𝑈𝑆))

Proof of Theorem lubel
StepHypRef Expression
1 clatl 17037 . . . 4 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
2 ssel 3577 . . . . 5 (𝑆𝐵 → (𝑋𝑆𝑋𝐵))
32impcom 446 . . . 4 ((𝑋𝑆𝑆𝐵) → 𝑋𝐵)
4 lublem.b . . . . 5 𝐵 = (Base‘𝐾)
5 lublem.u . . . . 5 𝑈 = (lub‘𝐾)
64, 5lubsn 17015 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑈‘{𝑋}) = 𝑋)
71, 3, 6syl2an 494 . . 3 ((𝐾 ∈ CLat ∧ (𝑋𝑆𝑆𝐵)) → (𝑈‘{𝑋}) = 𝑋)
873impb 1257 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝑆𝑆𝐵) → (𝑈‘{𝑋}) = 𝑋)
9 snssi 4308 . . . 4 (𝑋𝑆 → {𝑋} ⊆ 𝑆)
10 lublem.l . . . . 5 = (le‘𝐾)
114, 10, 5lubss 17042 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵 ∧ {𝑋} ⊆ 𝑆) → (𝑈‘{𝑋}) (𝑈𝑆))
129, 11syl3an3 1358 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → (𝑈‘{𝑋}) (𝑈𝑆))
13123com23 1268 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝑆𝑆𝐵) → (𝑈‘{𝑋}) (𝑈𝑆))
148, 13eqbrtrrd 4637 1 ((𝐾 ∈ CLat ∧ 𝑋𝑆𝑆𝐵) → 𝑋 (𝑈𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wss 3555  {csn 4148   class class class wbr 4613  cfv 5847  Basecbs 15781  lecple 15869  lubclub 16863  Latclat 16966  CLatccla 17028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-preset 16849  df-poset 16867  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-lat 16967  df-clat 17029
This theorem is referenced by:  lubun  17044  atlatmstc  34086  2polssN  34681
  Copyright terms: Public domain W3C validator