MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubun Structured version   Visualization version   GIF version

Theorem lubun 17044
Description: The LUB of a union. (Contributed by NM, 5-Mar-2012.)
Hypotheses
Ref Expression
lubun.b 𝐵 = (Base‘𝐾)
lubun.j = (join‘𝐾)
lubun.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubun ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = ((𝑈𝑆) (𝑈𝑇)))

Proof of Theorem lubun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubun.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2621 . . 3 (le‘𝐾) = (le‘𝐾)
3 lubun.u . . 3 𝑈 = (lub‘𝐾)
4 biid 251 . . 3 ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 simp1 1059 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → 𝐾 ∈ CLat)
6 unss 3765 . . . . 5 ((𝑆𝐵𝑇𝐵) ↔ (𝑆𝑇) ⊆ 𝐵)
76biimpi 206 . . . 4 ((𝑆𝐵𝑇𝐵) → (𝑆𝑇) ⊆ 𝐵)
873adant1 1077 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑆𝑇) ⊆ 𝐵)
91, 2, 3, 4, 5, 8lubval 16905 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = (𝑥𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
10 clatl 17037 . . . . 5 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
11103ad2ant1 1080 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → 𝐾 ∈ Lat)
121, 3clatlubcl 17033 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)
13123adant3 1079 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈𝑆) ∈ 𝐵)
141, 3clatlubcl 17033 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝑈𝑇) ∈ 𝐵)
15143adant2 1078 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈𝑇) ∈ 𝐵)
16 lubun.j . . . . 5 = (join‘𝐾)
171, 16latjcl 16972 . . . 4 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
1811, 13, 15, 17syl3anc 1323 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
19 simpl1 1062 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
2019, 10syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ Lat)
21 simpl2 1063 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑆𝐵)
22 simpr 477 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦𝑆)
2321, 22sseldd 3584 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
2419, 21, 12syl2anc 692 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑆) ∈ 𝐵)
25 simpl3 1064 . . . . . . . . . . . . . 14 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑇𝐵)
2619, 25, 14syl2anc 692 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑇) ∈ 𝐵)
2720, 24, 26, 17syl3anc 1323 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
281, 2, 3lubel 17043 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑦𝑆𝑆𝐵) → 𝑦(le‘𝐾)(𝑈𝑆))
2919, 22, 21, 28syl3anc 1323 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦(le‘𝐾)(𝑈𝑆))
301, 2, 16latlej1 16981 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → (𝑈𝑆)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3120, 24, 26, 30syl3anc 1323 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑆)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
321, 2, 20, 23, 24, 27, 29, 31lattrd 16979 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3332ralrimiva 2960 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦𝑆 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3411adantr 481 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝐾 ∈ Lat)
35 simpl3 1064 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑇𝐵)
36 simpr 477 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦𝑇)
3735, 36sseldd 3584 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦𝐵)
38 simpl1 1062 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝐾 ∈ CLat)
3938, 35, 14syl2anc 692 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑇) ∈ 𝐵)
4018adantr 481 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
411, 2, 3lubel 17043 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑦𝑇𝑇𝐵) → 𝑦(le‘𝐾)(𝑈𝑇))
4238, 36, 35, 41syl3anc 1323 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦(le‘𝐾)(𝑈𝑇))
43 simpl2 1063 . . . . . . . . . . . . . 14 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑆𝐵)
4438, 43, 12syl2anc 692 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑆) ∈ 𝐵)
451, 2, 16latlej2 16982 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → (𝑈𝑇)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
4634, 44, 39, 45syl3anc 1323 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑇)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
471, 2, 34, 37, 39, 40, 42, 46lattrd 16979 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
4847ralrimiva 2960 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦𝑇 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
49 ralunb 3772 . . . . . . . . . 10 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5033, 48, 49sylanbrc 697 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
51 breq2 4617 . . . . . . . . . . . . 13 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (𝑦(le‘𝐾)𝑧𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5251ralbidv 2980 . . . . . . . . . . . 12 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 ↔ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
53 breq2 4617 . . . . . . . . . . . 12 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (𝑥(le‘𝐾)𝑧𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5452, 53imbi12d 334 . . . . . . . . . . 11 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5554rspcv 3291 . . . . . . . . . 10 (((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵 → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5618, 55syl 17 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5750, 56mpid 44 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5857imp 445 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
5958ad2ant2rl 784 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
60 ralunb 3772 . . . . . . . . 9 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥))
61 simpl1 1062 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝐾 ∈ CLat)
62 simpl2 1063 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑆𝐵)
63 simpr 477 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
641, 2, 3lubl 17041 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑥𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 → (𝑈𝑆)(le‘𝐾)𝑥))
6561, 62, 63, 64syl3anc 1323 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 → (𝑈𝑆)(le‘𝐾)𝑥))
66 simpl3 1064 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑇𝐵)
671, 2, 3lubl 17041 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑥𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 → (𝑈𝑇)(le‘𝐾)𝑥))
6861, 66, 63, 67syl3anc 1323 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 → (𝑈𝑇)(le‘𝐾)𝑥))
6965, 68anim12d 585 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥) → ((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥)))
7061, 10syl 17 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝐾 ∈ Lat)
7113adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑈𝑆) ∈ 𝐵)
7215adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑈𝑇) ∈ 𝐵)
731, 2, 16latjle12 16983 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵𝑥𝐵)) → (((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7470, 71, 72, 63, 73syl13anc 1325 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7569, 74sylibd 229 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7660, 75syl5bi 232 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7776imp 445 . . . . . . 7 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥)
7877adantrr 752 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥)
7918adantr 481 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
801, 2latasymb 16975 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑥𝐵 ∧ ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8170, 63, 79, 80syl3anc 1323 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8281adantr 481 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8359, 78, 82mpbi2and 955 . . . . 5 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → 𝑥 = ((𝑈𝑆) (𝑈𝑇)))
8483ex 450 . . . 4 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) → 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
85 elun 3731 . . . . . . . 8 (𝑦 ∈ (𝑆𝑇) ↔ (𝑦𝑆𝑦𝑇))
8632, 47jaodan 825 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ (𝑦𝑆𝑦𝑇)) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
8785, 86sylan2b 492 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
8887ralrimiva 2960 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
89 ralunb 3772 . . . . . . . . 9 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧))
90 simpl1 1062 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ CLat)
91 simpl2 1063 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑆𝐵)
92 simpr 477 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
931, 2, 3lubl 17041 . . . . . . . . . . 11 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑧𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
9490, 91, 92, 93syl3anc 1323 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
95 simpl3 1064 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑇𝐵)
961, 2, 3lubl 17041 . . . . . . . . . . 11 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑧𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑇)(le‘𝐾)𝑧))
9790, 95, 92, 96syl3anc 1323 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑇)(le‘𝐾)𝑧))
9894, 97anim12d 585 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑧 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → ((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧)))
9989, 98syl5bi 232 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧)))
10090, 10syl 17 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ Lat)
10190, 91, 12syl2anc 692 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (𝑈𝑆) ∈ 𝐵)
10290, 95, 14syl2anc 692 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (𝑈𝑇) ∈ 𝐵)
1031, 2, 16latjle12 16983 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵𝑧𝐵)) → (((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
104100, 101, 102, 92, 103syl13anc 1325 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
10599, 104sylibd 229 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
106105ralrimiva 2960 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
107 breq2 4617 . . . . . . . . 9 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (𝑦(le‘𝐾)𝑥𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
108107ralbidv 2980 . . . . . . . 8 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ↔ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
109 breq1 4616 . . . . . . . . . 10 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (𝑥(le‘𝐾)𝑧 ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
110109imbi2d 330 . . . . . . . . 9 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)))
111110ralbidv 2980 . . . . . . . 8 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)))
112108, 111anbi12d 746 . . . . . . 7 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))))
113112biimprcd 240 . . . . . 6 ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
11488, 106, 113syl2anc 692 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
115114adantr 481 . . . 4 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
11684, 115impbid 202 . . 3 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
11718, 116riota5 6591 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑥𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) = ((𝑈𝑆) (𝑈𝑇)))
1189, 117eqtrd 2655 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = ((𝑈𝑆) (𝑈𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  cun 3553  wss 3555   class class class wbr 4613  cfv 5847  crio 6564  (class class class)co 6604  Basecbs 15781  lecple 15869  lubclub 16863  joincjn 16865  Latclat 16966  CLatccla 17028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-preset 16849  df-poset 16867  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-lat 16967  df-clat 17029
This theorem is referenced by:  paddunN  34690  poldmj1N  34691
  Copyright terms: Public domain W3C validator