![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapfzcons2 | Structured version Visualization version GIF version |
Description: Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
mapfzcons.1 | ⊢ 𝑀 = (𝑁 + 1) |
Ref | Expression |
---|---|
mapfzcons2 | ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {〈𝑀, 𝐶〉})‘𝑀) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfzcons.1 | . . . 4 ⊢ 𝑀 = (𝑁 + 1) | |
2 | ovex 6718 | . . . 4 ⊢ (𝑁 + 1) ∈ V | |
3 | 1, 2 | eqeltri 2726 | . . 3 ⊢ 𝑀 ∈ V |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → 𝑀 ∈ V) |
5 | elex 3243 | . . 3 ⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ V) | |
6 | 5 | adantl 481 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ V) |
7 | elmapi 7921 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) → 𝐴:(1...𝑁)⟶𝐵) | |
8 | fdm 6089 | . . . . . . 7 ⊢ (𝐴:(1...𝑁)⟶𝐵 → dom 𝐴 = (1...𝑁)) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) → dom 𝐴 = (1...𝑁)) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → dom 𝐴 = (1...𝑁)) |
11 | 10 | ineq1d 3846 | . . . 4 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (dom 𝐴 ∩ {𝑀}) = ((1...𝑁) ∩ {𝑀})) |
12 | 1 | sneqi 4221 | . . . . . 6 ⊢ {𝑀} = {(𝑁 + 1)} |
13 | 12 | ineq2i 3844 | . . . . 5 ⊢ ((1...𝑁) ∩ {𝑀}) = ((1...𝑁) ∩ {(𝑁 + 1)}) |
14 | fzp1disj 12437 | . . . . 5 ⊢ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ | |
15 | 13, 14 | eqtri 2673 | . . . 4 ⊢ ((1...𝑁) ∩ {𝑀}) = ∅ |
16 | 11, 15 | syl6eq 2701 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (dom 𝐴 ∩ {𝑀}) = ∅) |
17 | disjsn 4278 | . . 3 ⊢ ((dom 𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ dom 𝐴) | |
18 | 16, 17 | sylib 208 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ¬ 𝑀 ∈ dom 𝐴) |
19 | fsnunfv 6494 | . 2 ⊢ ((𝑀 ∈ V ∧ 𝐶 ∈ V ∧ ¬ 𝑀 ∈ dom 𝐴) → ((𝐴 ∪ {〈𝑀, 𝐶〉})‘𝑀) = 𝐶) | |
20 | 4, 6, 18, 19 | syl3anc 1366 | 1 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {〈𝑀, 𝐶〉})‘𝑀) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 ∩ cin 3606 ∅c0 3948 {csn 4210 〈cop 4216 dom cdm 5143 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 1c1 9975 + caddc 9977 ...cfz 12364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-z 11416 df-uz 11726 df-fz 12365 |
This theorem is referenced by: rexrabdioph 37675 |
Copyright terms: Public domain | W3C validator |