MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moni Structured version   Visualization version   GIF version

Theorem moni 17008
Description: Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
moni.z (𝜑𝑍𝐵)
moni.f (𝜑𝐹 ∈ (𝑋𝑀𝑌))
moni.g (𝜑𝐺 ∈ (𝑍𝐻𝑋))
moni.k (𝜑𝐾 ∈ (𝑍𝐻𝑋))
Assertion
Ref Expression
moni (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) ↔ 𝐺 = 𝐾))

Proof of Theorem moni
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moni.f . . . . 5 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
2 ismon.b . . . . . 6 𝐵 = (Base‘𝐶)
3 ismon.h . . . . . 6 𝐻 = (Hom ‘𝐶)
4 ismon.o . . . . . 6 · = (comp‘𝐶)
5 ismon.s . . . . . 6 𝑀 = (Mono‘𝐶)
6 ismon.c . . . . . 6 (𝜑𝐶 ∈ Cat)
7 ismon.x . . . . . 6 (𝜑𝑋𝐵)
8 ismon.y . . . . . 6 (𝜑𝑌𝐵)
92, 3, 4, 5, 6, 7, 8ismon2 17006 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
101, 9mpbid 234 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
1110simprd 498 . . 3 (𝜑 → ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))
12 moni.z . . . 4 (𝜑𝑍𝐵)
13 moni.g . . . . . . 7 (𝜑𝐺 ∈ (𝑍𝐻𝑋))
1413adantr 483 . . . . . 6 ((𝜑𝑧 = 𝑍) → 𝐺 ∈ (𝑍𝐻𝑋))
15 simpr 487 . . . . . . 7 ((𝜑𝑧 = 𝑍) → 𝑧 = 𝑍)
1615oveq1d 7173 . . . . . 6 ((𝜑𝑧 = 𝑍) → (𝑧𝐻𝑋) = (𝑍𝐻𝑋))
1714, 16eleqtrrd 2918 . . . . 5 ((𝜑𝑧 = 𝑍) → 𝐺 ∈ (𝑧𝐻𝑋))
18 moni.k . . . . . . . . 9 (𝜑𝐾 ∈ (𝑍𝐻𝑋))
1918adantr 483 . . . . . . . 8 ((𝜑𝑧 = 𝑍) → 𝐾 ∈ (𝑍𝐻𝑋))
2019, 16eleqtrrd 2918 . . . . . . 7 ((𝜑𝑧 = 𝑍) → 𝐾 ∈ (𝑧𝐻𝑋))
2120adantr 483 . . . . . 6 (((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) → 𝐾 ∈ (𝑧𝐻𝑋))
22 simpllr 774 . . . . . . . . . . 11 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝑧 = 𝑍)
2322opeq1d 4811 . . . . . . . . . 10 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → ⟨𝑧, 𝑋⟩ = ⟨𝑍, 𝑋⟩)
2423oveq1d 7173 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (⟨𝑧, 𝑋· 𝑌) = (⟨𝑍, 𝑋· 𝑌))
25 eqidd 2824 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝐹 = 𝐹)
26 simplr 767 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝑔 = 𝐺)
2724, 25, 26oveq123d 7179 . . . . . . . 8 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺))
28 simpr 487 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → = 𝐾)
2924, 25, 28oveq123d 7179 . . . . . . . 8 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝐹(⟨𝑧, 𝑋· 𝑌)) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾))
3027, 29eqeq12d 2839 . . . . . . 7 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → ((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) ↔ (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾)))
3126, 28eqeq12d 2839 . . . . . . 7 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝑔 = 𝐺 = 𝐾))
3230, 31imbi12d 347 . . . . . 6 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) ↔ ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3321, 32rspcdv 3617 . . . . 5 (((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) → (∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3417, 33rspcimdv 3615 . . . 4 ((𝜑𝑧 = 𝑍) → (∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3512, 34rspcimdv 3615 . . 3 (𝜑 → (∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3611, 35mpd 15 . 2 (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾))
37 oveq2 7166 . 2 (𝐺 = 𝐾 → (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾))
3836, 37impbid1 227 1 (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) ↔ 𝐺 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  cop 4575  cfv 6357  (class class class)co 7158  Basecbs 16485  Hom chom 16578  compcco 16579  Catccat 16937  Monocmon 17000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-cat 16941  df-mon 17002
This theorem is referenced by:  epii  17015  monsect  17055  fthmon  17199  setcmon  17349
  Copyright terms: Public domain W3C validator