MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcmon Structured version   Visualization version   GIF version

Theorem setcmon 16503
Description: A monomorphism of sets is an injection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcmon.h 𝑀 = (Mono‘𝐶)
Assertion
Ref Expression
setcmon (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋1-1𝑌))

Proof of Theorem setcmon
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2606 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2606 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2606 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 setcmon.h . . . . . 6 𝑀 = (Mono‘𝐶)
5 setcmon.u . . . . . . 7 (𝜑𝑈𝑉)
6 setcmon.c . . . . . . . 8 𝐶 = (SetCat‘𝑈)
76setccat 16501 . . . . . . 7 (𝑈𝑉𝐶 ∈ Cat)
85, 7syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
9 setcmon.x . . . . . . 7 (𝜑𝑋𝑈)
106, 5setcbas 16494 . . . . . . 7 (𝜑𝑈 = (Base‘𝐶))
119, 10eleqtrd 2686 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
12 setcmon.y . . . . . . 7 (𝜑𝑌𝑈)
1312, 10eleqtrd 2686 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
141, 2, 3, 4, 8, 11, 13monhom 16161 . . . . 5 (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1514sselda 3564 . . . 4 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
166, 5, 2, 9, 12elsetchom 16497 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋𝑌))
1716biimpa 499 . . . 4 ((𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) → 𝐹:𝑋𝑌)
1815, 17syldan 485 . . 3 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋𝑌)
19 simprr 791 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
2019sneqd 4133 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → {(𝐹𝑥)} = {(𝐹𝑦)})
2120xpeq2d 5050 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {(𝐹𝑥)}) = (𝑋 × {(𝐹𝑦)}))
2218adantr 479 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹:𝑋𝑌)
23 ffn 5941 . . . . . . . . . . . 12 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
2422, 23syl 17 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 Fn 𝑋)
25 simprll 797 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝑋)
26 fcoconst 6289 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑥𝑋) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹𝑥)}))
2724, 25, 26syl2anc 690 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝑋 × {(𝐹𝑥)}))
28 simprlr 798 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝑋)
29 fcoconst 6289 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑦𝑋) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹𝑦)}))
3024, 28, 29syl2anc 690 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑦})) = (𝑋 × {(𝐹𝑦)}))
3121, 27, 303eqtr4d 2650 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹 ∘ (𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑦})))
325ad2antrr 757 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑈𝑉)
339ad2antrr 757 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑋𝑈)
3412ad2antrr 757 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑌𝑈)
35 fconst6g 5989 . . . . . . . . . . 11 (𝑥𝑋 → (𝑋 × {𝑥}):𝑋𝑋)
3625, 35syl 17 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}):𝑋𝑋)
376, 32, 3, 33, 33, 34, 36, 22setcco 16499 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹 ∘ (𝑋 × {𝑥})))
38 fconst6g 5989 . . . . . . . . . . 11 (𝑦𝑋 → (𝑋 × {𝑦}):𝑋𝑋)
3928, 38syl 17 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑦}):𝑋𝑋)
406, 32, 3, 33, 33, 34, 39, 22setcco 16499 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})) = (𝐹 ∘ (𝑋 × {𝑦})))
4131, 37, 403eqtr4d 2650 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})))
428ad2antrr 757 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐶 ∈ Cat)
4311ad2antrr 757 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑋 ∈ (Base‘𝐶))
4413ad2antrr 757 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑌 ∈ (Base‘𝐶))
45 simplr 787 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹 ∈ (𝑋𝑀𝑌))
466, 32, 2, 33, 33elsetchom 16497 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑥}):𝑋𝑋))
4736, 46mpbird 245 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}) ∈ (𝑋(Hom ‘𝐶)𝑋))
486, 32, 2, 33, 33elsetchom 16497 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋) ↔ (𝑋 × {𝑦}):𝑋𝑋))
4939, 48mpbird 245 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑦}) ∈ (𝑋(Hom ‘𝐶)𝑋))
501, 2, 3, 4, 42, 43, 44, 43, 45, 47, 49moni 16162 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑥})) = (𝐹(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝑋 × {𝑦})) ↔ (𝑋 × {𝑥}) = (𝑋 × {𝑦})))
5141, 50mpbid 220 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑋 × {𝑥}) = (𝑋 × {𝑦}))
5251fveq1d 6087 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥})‘𝑥) = ((𝑋 × {𝑦})‘𝑥))
53 vex 3172 . . . . . . . 8 𝑥 ∈ V
5453fvconst2 6349 . . . . . . 7 (𝑥𝑋 → ((𝑋 × {𝑥})‘𝑥) = 𝑥)
5525, 54syl 17 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑥})‘𝑥) = 𝑥)
56 vex 3172 . . . . . . . 8 𝑦 ∈ V
5756fvconst2 6349 . . . . . . 7 (𝑥𝑋 → ((𝑋 × {𝑦})‘𝑥) = 𝑦)
5825, 57syl 17 . . . . . 6 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑋 × {𝑦})‘𝑥) = 𝑦)
5952, 55, 583eqtr3d 2648 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ ((𝑥𝑋𝑦𝑋) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
6059expr 640 . . . 4 (((𝜑𝐹 ∈ (𝑋𝑀𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6160ralrimivva 2950 . . 3 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
62 dff13 6391 . . 3 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6318, 61, 62sylanbrc 694 . 2 ((𝜑𝐹 ∈ (𝑋𝑀𝑌)) → 𝐹:𝑋1-1𝑌)
64 f1f 5996 . . . 4 (𝐹:𝑋1-1𝑌𝐹:𝑋𝑌)
6516biimpar 500 . . . 4 ((𝜑𝐹:𝑋𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
6664, 65sylan2 489 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
6710adantr 479 . . . . . 6 ((𝜑𝐹:𝑋1-1𝑌) → 𝑈 = (Base‘𝐶))
6867eleq2d 2669 . . . . 5 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧𝑈𝑧 ∈ (Base‘𝐶)))
695ad2antrr 757 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑈𝑉)
70 simprl 789 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑧𝑈)
719ad2antrr 757 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑋𝑈)
7212ad2antrr 757 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑌𝑈)
73 simprrl 799 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋))
746, 69, 2, 70, 71elsetchom 16497 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ 𝑔:𝑧𝑋))
7573, 74mpbid 220 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝑔:𝑧𝑋)
7664ad2antlr 758 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋𝑌)
776, 69, 3, 70, 71, 72, 75, 76setcco 16499 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹𝑔))
78 simprrr 800 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ∈ (𝑧(Hom ‘𝐶)𝑋))
796, 69, 2, 70, 71elsetchom 16497 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ( ∈ (𝑧(Hom ‘𝐶)𝑋) ↔ :𝑧𝑋))
8078, 79mpbid 220 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → :𝑧𝑋)
816, 69, 3, 70, 71, 72, 80, 76setcco 16499 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) = (𝐹))
8277, 81eqeq12d 2621 . . . . . . . . 9 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) ↔ (𝐹𝑔) = (𝐹)))
83 simplr 787 . . . . . . . . . . 11 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → 𝐹:𝑋1-1𝑌)
84 cocan1 6421 . . . . . . . . . . 11 ((𝐹:𝑋1-1𝑌𝑔:𝑧𝑋:𝑧𝑋) → ((𝐹𝑔) = (𝐹) ↔ 𝑔 = ))
8583, 75, 80, 84syl3anc 1317 . . . . . . . . . 10 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹𝑔) = (𝐹) ↔ 𝑔 = ))
8685biimpd 217 . . . . . . . . 9 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹𝑔) = (𝐹) → 𝑔 = ))
8782, 86sylbid 228 . . . . . . . 8 (((𝜑𝐹:𝑋1-1𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋)))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8887anassrs 677 . . . . . . 7 ((((𝜑𝐹:𝑋1-1𝑌) ∧ 𝑧𝑈) ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
8988ralrimivva 2950 . . . . . 6 (((𝜑𝐹:𝑋1-1𝑌) ∧ 𝑧𝑈) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
9089ex 448 . . . . 5 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧𝑈 → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = )))
9168, 90sylbird 248 . . . 4 ((𝜑𝐹:𝑋1-1𝑌) → (𝑧 ∈ (Base‘𝐶) → ∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = )))
9291ralrimiv 2944 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
931, 2, 3, 4, 8, 11, 13ismon2 16160 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
9493adantr 479 . . 3 ((𝜑𝐹:𝑋1-1𝑌) → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
9566, 92, 94mpbir2and 958 . 2 ((𝜑𝐹:𝑋1-1𝑌) → 𝐹 ∈ (𝑋𝑀𝑌))
9663, 95impbida 872 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹:𝑋1-1𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2892  {csn 4121  cop 4127   × cxp 5023  ccom 5029   Fn wfn 5782  wf 5783  1-1wf1 5784  cfv 5787  (class class class)co 6524  Basecbs 15638  Hom chom 15722  compcco 15723  Catccat 16091  Monocmon 16154  SetCatcsetc 16491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-fz 12150  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-hom 15736  df-cco 15737  df-cat 16095  df-cid 16096  df-mon 16156  df-setc 16492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator