MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nna0 Structured version   Visualization version   GIF version

Theorem nna0 7447
Description: Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.)
Assertion
Ref Expression
nna0 (𝐴 ∈ ω → (𝐴 +𝑜 ∅) = 𝐴)

Proof of Theorem nna0
StepHypRef Expression
1 nnon 6839 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
2 oa0 7359 . 2 (𝐴 ∈ On → (𝐴 +𝑜 ∅) = 𝐴)
31, 2syl 17 1 (𝐴 ∈ ω → (𝐴 +𝑜 ∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1938  c0 3777  Oncon0 5530  (class class class)co 6426  ωcom 6833   +𝑜 coa 7320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-oadd 7327
This theorem is referenced by:  nnacl  7454  nnacom  7460  nnaass  7465  nndi  7466  nnmsucr  7468  nnaword1  7472  nnmordi  7474  nnawordex  7480  nnaordex  7481  ackbij1lem13  8813  addnidpi  9478  1lt2pi  9482  hashgadd  12892
  Copyright terms: Public domain W3C validator